Lecture Outline: Ecosystems And Energy

I. Ecosystem Producers and Energy Transfer Processes

- A. Types of Producers
 - 1. Producers are required in every ecosystem because everything relies on them
 - 2. Two major categories based on production method:
 - a. Phototrophs: use photosynthesis (vast majority of ecosystems)
 - b. Chemotrophs: use chemosynthesis (e.g., deep-sea ecosystems where light cannot penetrate)
- B. Cellular Respiration and Electron Acceptors
 - 1. Respiration dismantles fuel molecules (organic compounds) to release energy by breaking carbon-hydrogen bonds
 - 2. Hydrogen atoms are separated into protons and electrons
 - a. Electrons are transferred down an electron transport chain, releasing energy
 - b. Energy powers the pumping of protons, creating a proton gradient
 - c. Proton diffusion through ATP synthase generates ATP
 - Respiration requires a final electron acceptor to prevent the electron transport chain from filling up
 - 4. Types of Respiration
 - a. Aerobic respiration: uses oxygen (O₂) as the final electron acceptor, reducing it into water (H₂O)
 - b. Anaerobic respiration: uses something other than O_2 (e.g., iron ions in deep-sea environments)
 - Deep-Sea Chemosynthetic Example
 - a. Iron ions are used as the final electron acceptor and are reduced
 - b. When the reduced iron reaches the surface where oxygen is present, O₂ oxidizes the iron
 - c. The oxidation produces iron oxide, also known as rust
- C. Energy Flow Versus Material Cycling
 - 1. Energy flows through an ecosystem
 - a. Energy enters as light (sunlight)
 - b. Energy is transformed and transferred within the ecosystem
 - c. Energy eventually leaves as heat

- 2. Materials (atoms) largely stay within the ecosystem and get recycled
- D. Carbon Fixation and Decomposition
 - 1. Producers perform **carbon fixation**: incorporating carbon from an inorganic source (like carbon dioxide, CO₂) into organic compounds
 - 2. Consumers and producers undo carbon fixation through cellular respiration (complete oxidation of fuel)
 - a. The summary reaction for the complete oxidation of fuel is the exact reverse of photosynthesis
 - b. Oxygen and fuel are consumed, turning back into CO₂ and H₂O, and releasing energy
 - 3. Decomposers break down dead and decaying matter (detritus), returning carbon back into inorganic form (CO₂) to be recycled by producers

II. Measures of Ecosystem Production

- A. Gross Primary Production (GPP)
 - 1. Energy converted to chemical energy of organic compounds in a given amount of time
 - 2. Represents the total amount of energy captured by producers
- B. Net Primary Production (NPP)
 - NPP equals GPP minus respiration of autotrophs (R_A)
 - 2. NPP = GPP R_{Δ}
 - 3. Represents the chemical energy that builds up after producers use some organic material as fuel for themselves
- C. Net Ecosystem Production (NEP)
 - 1. NEP equals GPP minus total respiration (R_T)
 - 2. $NEP = GPP R_T$
 - 3. Represents the total accumulation of biomass in the ecosystem (accounting for respiration by both producers and consumers)
- D. Estimation of Production
 - 1. Production estimates use indirect methods rather than direct measurement of every organism
 - 2. Percent reflectance (greenness) measured by satellites indicates chlorophyll content
 - 3. This measurement allows for calculation of GPP based on the number of producers present

III. Limiting Resources

- A. Definition of Limiting Resource
 - 1. Any resource (material or energy, e.g., light or water) that is in shortest supply relative to how much is needed for a particular ecosystem
 - 2. Supplementing the limiting resource will cause something else to become the new limiting

resource

- B. Terrestrial Ecosystems (Land)
 - 1. NPP is lower at poles (less light) and in deserts (lack of water)
 - 2. Wetter places, such as rainforests, generally have higher NPP
 - 3. Water is often a limiting resource on land
- C. Aquatic Ecosystems (Water-based)
 - 1. Water is never the limiting resource
 - 2. Often limited by nutrients, frequently nitrogen (e.g., in ammonium) or phosphorus (e.g., in phosphate)
 - 3. Some aquatic ecosystems may be iron limited

IV. Energy Assimilation and Trophic Dynamics

- A. Energy Assimilation Efficiency
 - 1. Energy is consumed from the lower trophic level (e.g., 200 J of chemical energy taken in)
 - 2. A significant portion of ingested energy is lost as feces and is not assimilated (e.g., 100 J)
 - 3. Assimilated energy is used for cellular respiration or incorporated into new biomass (growth/reproduction)
 - 4. Only about 10% of the energy from the lower trophic level is typically assimilated into new organic material in the next level
- B. Thermodynamics and Trophic Levels
 - 1. First Law of Thermodynamics: Energy cannot be created or destroyed
 - 2. Second Law of Thermodynamics:
 - a. Entropy (disorder) is always increasing in the universe
 - b. In any energy transaction, some energy is lost as unusable heat
 - c. No energetic process is 100% efficient
 - 3. The inefficiency of energy transfer limits the number of consumer levels
 - 4. Consumer levels usually end at tertiary; quaternary consumers are possible only in rich ecosystems
- C. Pyramids of Energy and Production
 - Energy Pyramids: Must always be an upright pyramid (narrower going up) due to the Second Law of Thermodynamics
 - 2. Production (Biomass) Pyramids:
 - a. Usually upright
 - b. Can be inverted (wider going up) in some aquatic ecosystems
 - c. Inverted pyramids are possible due to a high turnover rate where producers are consumed almost as quickly as they reproduce

V. Major Biogeochemical Cycles

- A. The Water Cycle
 - 1. Water is indispensable for life (life is aqueous solution chemistry)
 - 2. Water is unique in existing in solid, liquid, and gas phases within a temperature range livable by organisms
 - 3. Operates at a global scale because water vapor is a component of air
- B. The Carbon Cycle
 - 1. Carbon is indispensable as the basis of four major organic macromolecules:
 - a. Proteins
 - b. Lipids
 - c. Nucleic acids
 - d. Polysaccharides (Carbohydrates)
 - 2. Operates at a **global scale** because carbon dioxide (CO₂) is a component of air
 - 3. Historically balanced by reciprocal processes: photosynthesis (CO₂ removal) and oxidation of fuels (CO₂ production)
 - 4. Burning fossil fuels (carbon stored long ago) upsets the balance, causing CO₂ levels to increase
- C. The Nitrogen Cycle
 - 1. Nitrogen is essential for life, often a limiting resource
 - 2. Found in amino acids (monomers of proteins) and nitrogenous bases (components of nucleotides)
 - Operates at a global scale because nitrogen gas (N₂) makes up about three-quarters of the air
- D. The Phosphorus Cycle
 - 1. Operates fairly **locally** because phosphorus compounds are not gaseous components of air
 - 2. Phosphorus is essential for life because it is found in:
 - a. Phosphate components of every nucleotide (and thus all nucleic acids)
 - b. ATP (Adenosine Triphosphate) and GTP (Guanosine Triphosphate), key energy carrying molecules required for metabolism
 - c. Phosphorylation and dephosphorylation processes used to switch proteins and enzymes between active and inactive forms

VI. Ecosystem Disturbance and Reclamation

- A. Impact of Deforestation
 - 1. Removal of producers (trees) drastically reduces the ecosystem's ability to retain nutrients
 - 2. Deforested valleys show a massive increase in nitrate concentration in runoff water,

demonstrating nutrient loss

- B. Ecological Solutions to Damage
 - 1. **Restoration**: Undoing damage by putting back things that should be there that were taken out (e.g., physical reshaping the land, planting life)
 - 2. **Remediation**: Cleaning up messes by taking back things that were put into the ecosystem that should not be there (e.g., toxic wastes)
 - a. Bioremediation utilizes microorganisms (often bacteria)
 - b. Microorganisms consume or transform toxic organic compounds into less toxic substances