Lecture Outline: The Colonization Of Land By Plants And Fungi

I. Introduction to Plants and Fungi

- A. Fungi and Plants are non-protist Eukaryotes
 - 1. A protist is a Eukaryote that is not an animal, plant, or fungus
 - 2. Fungi and plants are not highly related phylogenetically
 - a. Fungi are more related to animals than they are to plants
 - b. Plants have algae (specifically Charophyte algae) as their sister taxon

B. Trophic Interactions

- 1. Plants are **autotrophs** (specifically photoautotrophs/producers)
- 2. Fungi, like animals, are **heterotrophs** (cannot make their own food)
- C. Shared Lifestyle: Digestion and Absorption
 - 1. Both fungi and animals acquire nutrition by digesting food outside their main body
 - a. Enzymes (catalyst proteins) are secreted to break down complex molecules into small subunits (e.g., amino acids, monosaccharides)
 - Absorption occurs when small molecules penetrate the cell membrane and enter the body
 - 2. Digestion in Animals
 - a. Food is put into the alimentary canal (a continuous tube from mouth to anus)
 - b. The entire contents of the alimentary canal are outside the body
 - c. Enzymes are secreted into the canal for digestion before absorption into body cells
 - 3. Digestion in Fungi
 - a. Fungi live directly on their food source
 - b. Enzymes are secreted outside the body onto the food
 - c. Smaller molecules are then absorbed into the fungus's body
- D. Rationale for Studying Plants and Fungi Together
 - 1. They **co-evolved**, appearing on land about the same time (roughly half a billion years ago)
 - 2. Their co-evolution continues to affect each other's evolutionary trajectories

II. Plant Origins and Characteristics

- A. Evidence Linking Plants and Charophyte Algae
 - 1. Shared cell walls made largely of cellulose (a structural polysaccharide)
 - a. Cellulose is built by hooking together glucose monosaccharides

- 2. Unique circular arrangements of proteins in the plasma membrane
 - a. These molecular machines build and string out cellulose polymers for the cell wall
 - b. Other organisms using cellulose have similar devices, but they are not ringed like this
- B. Life Cycles: Alternation of Generations (AOG)
 - 1. All sexual species must alternate between fertilization and meiosis
 - a. Fertilization (gamete fusion) **doubles ploidy** (e.g., N to 2N)
 - b. Meiosis halves ploidy (e.g., 2N to N)
 - 2. Ploidy definition: How many of each type of chromosome a cell has
 - a. N represents the number of different kinds of chromosomes (haploid)
 - b. 2N represents diploid (two of each type)
 - 3. Animal Life Cycle
 - a. Only the diploid (2N) stage is multicellular
 - b. The haploid (N) stage (gametes) remains unicellular
 - 4. Fungi Life Cycle
 - a. The haploid (N) stage is multicellular (mycelium)
 - b. They produce gametes by mitosis (since they are already N)
 - c. The diploid (2N) stage (zygote) is unicellular, immediately undergoing meiosis
 - 5. AOG in Plants
 - a. Plants have multicellularity in **both** the haploid (N) and diploid (2N) phases
 - b. The multicellular haploid phase is the **gametophyte** (gamete-producing plant)
 - (1) Produces gametes by mitosis
 - c. The multicellular diploid phase is the **sporophyte** (spore-producing plant)
 - (1) Produces haploid spores by meiosis
 - 6. Plants produce **multicellular dependent embryos** that develop inside the body of the previous generation
- C. Plant Colonization of Land
 - 1. Ancestors were aquatic algae
 - 2. Land is a desiccating environment (drying out)
 - Evolutionary breakthrough: The polymer sporopollenin provides desiccation resistance to spores and pollen grains
 - 4. The earliest plants appeared around 475 million years ago
- D. Major Plant Groups and Innovations
 - 1. Plants are a monophyletic taxon
 - 2. Nonvascular Plants (Bryophytes)
 - a. The basal group (most primitive/ancestral)

- b. Includes mosses, liverworts, and hornworts
- c. Lack vascular tissues (vessels) and are size-constrained (cannot be big in all three dimensions)
- d. Have rhizoids (root-like structures) only for anchoring, not transport
- e. AOG status: Gametophyte (N) is the dominant generation; sporophyte (2N) is dependent on it
- 3. Vascular Plants (Vascularity evolved around 425 million years ago)
 - a. Vascularity allows for larger size by transporting materials internally (e.g., xylem and phloem)
 - b. Almost all extant plant species are vascular
 - c. AOG status: Sporophyte (2N) is the dominant generation
- 4. Seedless Vascular Plants
 - a. Examples include ferns and lycophytes
 - b. AOG status: Sporophyte is dominant, gametophyte is microscopically small (with free-living, swimming gametes)
- 5. **Seeded Plants** (Seeds evolved around 300 million years ago)
 - a. The seed is a protective, desiccation-resistant package containing a growing embryo and a food supply
 - b. A seed develops from a fertilized ovule; the embryo is the sporophyte of the next generation
 - c. AOG status: Sporophyte is dominant; the gametophyte is barely multicellular (2-3 cells) and lives entirely inside the sporophyte
- 6. Gymnosperms (Naked seed)
 - a. Gymno means naked; seeds are exposed to the surroundings (e.g., on cones)
 - b. Examples: Conifers (pine trees, fir trees)
- 7. Angiosperms (Chamber seed)
 - a. Angio means chamber; seeds develop inside a chamber (the ovary)
 - b. Also known as **flowering plants** (the most successful group)
 - c. The "Three Fs" of Angiosperms:
 - (1) Flowers (advertisements for pollinators)
 - (2) Fruit (a seed-bearing structure developed from the ovary)
 - (3) Double Fertilization
- E. Flower Structure (Angiosperms)
 - 1. A flower is the reproductive structure
 - 2. Complete flowers have four major parts called whorls:

- a. Sepals and Petals: **Sterile parts** (do not directly produce gametes)
- b. Stamens (Male parts): Fertile parts
 - (1) Anther produces pollen grains (containing sperm cells)
- c. Carpels (Female parts): Fertile parts
 - (1) Ovary (bulbous base) contains ovules (which become seeds)
 - (2) Style (slender stalk)
 - (3) Stigma (sticky surface) receives pollen grains

III. Fungi Morphology, Life Cycle, and Phylogeny

A. Fungal Structure

- 1. Most fungi are multicellular; unicellular fungi are called **yeasts**
- 2. The body consists of highly branched, slender filaments called **hyphae** (singular: hypha)
- 3. The overall network of hyphae is the **mycelium**
 - a. The mycelium is the interface for efficient digestion and absorption
 - b. Slender and branched hyphae maximize surface area for contact with food
- 4. The mushroom structure is primarily for reproduction

B. Fungal Sexual Life Cycle

- 1. Fertilization is often drawn out into two separate steps:
 - a. **Plasmogamy**: Fusion of the cytoplasm of two gametes
 - b. Heterokaryotic stage: A single cell containing two distinct nuclei
 - c. Karyogamy: Fusion of the two nuclei, forming a diploid (2N) zygote
- 2. The diploid zygote immediately undergoes meiosis to produce haploid (N) spores
- 3. Spores undergo mitosis (germination) to become the multicellular haploid (N) adult (mycelium)
- 4. Asexual reproduction involves making genetically identical spores via mitosis

C. Major Groups of Fungi

- 1. Fungi are a monophyletic taxon (a true clade)
- 2. The degree of speciation (adaptive radiation) varies greatly among groups
- 3. The five major groups:
 - a. Chytrids (approx. 1,000 species): Often unicellular, mostly aquatic
 - b. Zygomycetes (approx. 1,000 species): E.g., common bread molds
 - c. Glomeromycetes (approx. 160 species): Least successful in speciation
 - (1) Ecologically vital as primary formers of mycorrhizae
 - d. Ascomycetes (approx. 65,000 species): The largest group, called "sac fungi"
 - e. Basidiomycetes (approx. 30,000 species): Called "club fungi," includes most familiar mushrooms

IV. Ecological Interactions Between Fungi and Plants

- A. Mycorrhizae (Fungus roots)
 - 1. A **mutualistic symbiosis** between plant roots and fungi
 - 2. Fungal hyphae grow close to the plant cells in the root, maximizing surface area for exchange
 - 3. Hyphae branch into finger-like projections but do not pierce the plant's plasma membrane
- B. Endophytes (Within a plant)
 - 1. Fungi that live **inside** plant parts, such as leaves
 - 2. Also a mutualistic symbiosis; the plant feeds the fungus, and the fungus protects the plant from pathogens

C. Other Roles

- 1. Lichens: A symbiotic relationship between a fungus and a unicellular photosynthetic organism (alga or cyanobacterium)
 - a. Ecologically important for breaking down bare rock (weathering) and initiating soil formation
- 2. Pathogenic fungi cause significant loss of agricultural crops

V. Co-evolution and Speciation in Flowering Plants

- A. Co-evolution with pollinators (animals that carry gametes) drives plant evolution
- B. Flower Symmetry and Pollinator Entry
 - 1. Radially symmetrical flowers: Have multiple entry points for pollinators
 - 2. Bilaterally symmetrical flowers: Have limited (typically one) entry point for pollinators
- C. Symmetry and Speciation
 - 1. Bilaterally symmetrical flowers restrict how pollinators enter, ensuring consistent pollen placement and delivery
 - 2. This restriction leads to **less gene flow** between populations
 - 3. Less gene flow results in **more speciation** (adaptive radiation) compared to radially symmetrical flowers