Lecture Outline: The Origin And Diversification of Eukaryotes

Introduction to Eukaryotes

A. Distinctions from Prokaryotes

- 1. Eukaryotes possess a highly complex cytoskeleton, composed of three major kinds of proteins (microtubules, microfilaments, and intermediate filaments)
- 2. This complex cytoskeleton enables drastic changes in cell shape, such as engulfing a cell as large as itself
- 3. Prokaryotes (archaeal or bacterial cells) largely retain their cell shape
- 4. Prokaryotes' claim to fame is their biochemistry, while the variety of forms (different shaped cells) is a claim to fame for eukaryotes, specifically the protests

B. The Protists Group

- 1. All protests are eukaryotes
- 2. Not all eukaryotes are protests
- Some protests possess the most complex shaped cells among all living things

II. History and Timeline of Eukaryotic Evolution

A. Temporal Context

- 1. Life existed for over a billion years before the first simplest eukaryotes appeared
- 2. Prokaryotes were the only life forms present for a long time
- 3. The entire history of eukaryotes spans less than half the overall age of life

B. Three Major Eras of Eukaryotic History

1. First Period: Emergence of Eukaryotes

- Began at least 1.8 billion years ago, evidenced by fossilized remains
- b. Involved speciation and some diversification, but not extensive
- c. Organisms were unicellular

2. Middle Period: Age of Novelties

- a. Roughly 1.3 billion years ago until a little over half a billion years ago
- b. Important new structures evolved in the oceans
- Some multicellularity evolved, although organisms remained generally small
- d. Key novelties evolved in specialized membrane-bounded organelles:
 - (1) Eukaryotic cellular respiration
 - (2) Eukaryotic photosynthesis

3. Most Recent Period: Age of Hugeness

- a. Roughly 600 million years ago to the present
- b. Very large organisms finally appeared
- c. Familiar groups originated: Plants, Animals, and Fungi

III. Origin of Eukaryotic Complexity (Endosymbiotic Theory)

A. Origin of the Nucleus and Internal Membranes

- 1. The ancestor to all eukaryotes was an ancestral prokaryote, most likely an anaerobic archaen
- 2. The first eukaryote cell lineage is genetically similar to archaens
- 3. Invagination (infolding) of the plasma membrane began to surround the nucleoid (the region where DNA is located in a prokaryote)
- 4. Fusing infoldings created a true nucleus, which is a membrane-bounded organelle
- 5. The resulting nuclear envelope is two membrane layers thick, consistent with the infolding scenario
- 6. Other membrane structures formed in continuity with the nuclear envelope:
 - a. Endoplasmic reticulum (ER)
 - b. Golgi complex or Golgi apparatus
- 7. The cell that resulted from this process was officially a eukaryote, but it was still anaerobic

B. Primary Endosymbiosis: Origin of Mitochondria and Chloroplasts

- Endosymbiosis is the condition of living together where one organism lives specifically inside the other
- 2. This occurred in the unicellular anaerobic eukaryotic ancestor

3. Mitochondria Origin (The First Event)

- a. The anaerobic eukaryote engulfed an aerobic bacterium that was capable of cellular respiration
- b. The bacterium survived the engulfing process instead of being killed and digested
- c. The surviving aerobic bacterium became the first mitochondrion
- d. Evidence supporting this origin:
 - (1) Mitochondria resemble bacteria in shape
 - (2) Mitochondria have two membranes (outer host membrane, inner original bacterial membrane)
 - (3) The inner membrane is molecularly similar to a bacterial membrane, while the outer membrane is similar to a eukaryotic membrane
 - (4) Mitochondria possess their own circular DNA chromosome, separate from the nucleus
 - (5) Mitochondria have their own ribosomes (with subunits similar to bacterial

ribosomes)

- (6) Mitochondria reproduce themselves within the cell using binary fission
- e. The resulting cell was an aerobic eukaryote, the ancestor to organisms like animals (which have mitochondria but not chloroplasts)

4. Chloroplast Origin (The Subsequent Event)

- a. The aerobic eukaryote (which already had mitochondria) engulfed a photosynthetic bacterium
- b. The surviving photosynthetic bacterium became the first chloroplast
- c. Evidence supporting this origin (multiple membranes, circular DNA, bacterial-like ribosomes) applies to chloroplasts as well
- d. Cells that underwent both events are ancestors to all photosynthetic eukaryotes (plants and algae)

C. Secondary Endosymbiosis

- 1. A chloroplast is one example of a general structure called a plastid
- 2. Some eukaryotes have plastids with three or more membranes
- 3. Secondary endosymbiosis involves serial engulfing, where a cell containing a plastid (from primary endosymbiosis) is engulfed by an even bigger cell
- 4. Each engulfing event builds up layers of membrane
- 5. In rare cases, structures like the chromatophore may perform photosynthesis due to independent convergent evolution rather than traditional chloroplast development

IV. Transition to Multicellularity and Phylogenetic Clades

A. Multicellularity

- 1. Multicellularity evolved gradually from a colonial lifestyle
- 2. A colonial lifestyle involves individual cells connected together, but all cells perform basically the same functions
- 3. True multicellularity is defined by having different kinds of cells performing different functions for the entire collection of cells

B. Relationship between Animals and Choanoflagellates

- 1. Animals and unicellular choanoflagellates are sister taxa, meaning they spring from the same node on the phylogenetic tree
- 2. A collar cell (choanocyte) from a sponge (a basal animal taxon) is morphologically almost indistinguishable from an individual choanoflagellate
- 3. A key evolutionary event (mutationally) in the animal lineage led to the development of the CCD protein domain
- 4. The CCD domain is important in cell-to-cell adhesion, which is required for a multicellular organism

5. Choanoflagellates, lacking this domain, remained freeliving solitary unicellular individuals

C. Classification Definitions in Eukarya (Domain Eukarya)

1. The phylogenetic tree of Eukarya often contains a polytomy (a node splitting into four major groups simultaneously), indicating insufficient evidence to resolve the exact relationships

2. **Definition of Protest**

- a. The word "protest" is retained but the group is no longer a monophyletic taxon (a true clade)
- b. A protest is defined as any eukaryote that is not an animal, a plant, or a fungus
- c. Protests form a paraphyletic taxon (a group that includes a common ancestor but excludes some descendants)

3. Definition of Algae

- a. Algae (plural of alga) is also a paraphyletic, catchall word
- b. Algae are defined as photosynthetic protests
- c. Plants are photosynthetic but are not considered algae because they are plants, not protests
- d. Non-photosynthetic protests are heterotrophs

4. Four Major Clades (Monophyletic Taxa) of Eukarya

- a. Excavata
- b. SAR clade (Stramenopiles, Alveolates, Rhizarians)
- c. Archaeplastida
- d. Unikonta

V. Examples of Eukaryotic Clades and Protistan Diversity

A. Excavata

- 1. Named because many species have a surface area that looks excavated (dug out)
- 2. Many members are unicellular parasites of humans (e.g., parabasalids causing sexually transmitted diseases, or those causing sleeping sickness)
- 3. The group also includes photosynthetic species like Euglenids

B. SAR Clade

1. Stramenopiles (S)

- a. Diatoms are ocean-dwelling, photosynthetic protests (algae)
- b. They are ecologically important globally for oxygen production
- c. Diatoms produce intricate glass cases called tests made of silicon dioxide
- d. Brown Algae are among the largest algae, some reaching the size of trees in the ocean
- e. Brown algae are not plants, and their structures are superficial resemblances: they use holdfasts (not roots), stipes (not stems), and blades (not leaves)

2. Alveolates (A)

- a. Named because many members have bag-like structures in their cells called alveoli
- b. Includes photosynthetic and parasitic species
- c. Dinoflagellates are ecologically important photosynthetic species that can cause red tide due to population spikes
- d. Ciliates (e.g., <u>Paramecium</u>) use cilia (hairs) to create water currents that sweep food particles toward an oral groove (mouth)

C. Archaeplastida

1. Includes three major groups of photosynthetic eukaryotes: Red Algae, Green Algae, and all Plants

2. Red Algae

- a. Look red because their pigments reflect red light
- b. These pigments absorb blue and green light well, allowing them to live deeper in the ocean where blue light penetrates
- c. Used in products such as sushi wrappers

3. Green Algae

- a. Appear green because their chlorophyll absorbs red and blue light, reflecting green light
- b. The Charophytes are the sister taxon to land plants

D. Unikonta

- 1. Includes Animals and Fungi, which are more closely related to each other than either is to Plants
- 2. Also includes protest groups like the Amoebozoans
- 3. An amoeba is a loose, paraphyletic term for any cell that moves by pseudopodal (false feet) locomotion
- 4. Slime molds are an example of an Amoebozoan:
 - a. They live an asexual or sexual life cycle
 - b. They exist as haploid (N) solitary unicellular amoebas when food is plentiful
 - c. Sexual reproduction involves the fusion of haploid gametes to produce a zygote
 - d. When food runs out, the individual amoebas aggregate into a large, moving multicellular mass (the slime mold)
 - e. The cells in the mass cooperate, with some forming a stalk and others forming fruiting bodies that release haploid spores (the asexual part)

VI. Ecological Interactions of Protists

A. Protists as Producers

- 1. Autotrophs (producers) are necessary to sustain the base of any ecosystem
- 2. Unicellular algae are vital protistan producers, along with cyanobacteria (prokaryotic

producers)

- 3. These unicellular algae are plankton (small floating matter) that serve as food for consumers
- 4. A decrease in ocean producers (measured by greenness/chlorophyll) is observed globally, threatening the consumer organisms dependent on them

B. Protists in Symbiotic Relationships

1. Symbiosis is a close relationship between species, which may include mutualism or parasitism

2. Mutualism (Mutual Benefit)

- a. Example: A microscopic protist living inside the digestive tract of termites
- b. Termites are animals and cannot digest wood (cellulose, a polymer of glucose) because they lack the necessary enzymes
- c. The symbiotic protist continuously digests the cellulose for its own life, freeing up glucose that the termite can then use for nutrition

3. Parasitism (Harm to One Host)

- a. Many protests are important parasites of various eukaryotes, including humans
- b. Some parasites have complex relationships involving multiple hosts (e.g., a specific mosquito and a human)
- c. Example: The parasite causing sleeping sickness (a trypanosome) is never free-living
- d. The parasite's life cycle involves distinct stages in the human host:
 - (1) Injected cells travel to the liver, invade liver cells (hepatocytes), and multiply into haploid merozoites, causing liver cell damage
 - (2) Merozoites infect red blood cells and produce gametocytes
- e. The life cycle continues in the mosquito host:
 - (1) The mosquito ingests gametocytes from the human
 - (2) Gametes fuse in the mosquito during fertilization to form a zygote
 - (3) The zygote undergoes meiosis to produce haploid sporozoites
 - (4) Sporozoites are delivered to a new human host when the mosquito bites