Lecture Outline: Diffusion & Osmosis

- I. Three Major Categories of Transport Processes
 - A. Active Transport.
 - B. Passive Transport.
 - C. Vesicular Transport
 - 1. Named because it uses vesicles.
 - 2. Will be discussed in a separate lecture, but is noted as one of the three mechanisms.
- II. Distinctions Between Active and Passive Transport
 - A. Energy Requirement Distinction
 - 1. Both require energy for movement.
 - 2. Passive transport: Energy is **built into the system** (no additional energy required).
 - 3. Active transport: Requires additional energy to occur.
 - B. The Concept of a Gradient
 - 1. Definition: A difference in measurements at two places.
 - 2. Examples: Pressure gradient, voltage (gradient of electrical potential energy).
 - 3. Concentration Gradient: Relevant type for the experiment; involves differences in solute/solvent concentration inside and outside the cell.
- III. Passive Transport and Diffusion
 - A. Passive Transport Mechanism and Energy
 - 1. Driven by the gradient itself, which is a form of potential energy.
 - 2. Based on random movement in all directions (Brownian motion).
 - 3. Net effect is directional: Movement from high concentration to low concentration (**down the gradient**).
 - 4. Ceases when the gradient is zero (equilibrium).
 - B. Simple Diffusion (Without a Membrane)

- 1. Example: Sugar cube dissolving in water.
- 2. Solutes and solvents diffuse independently down their respective gradients simultaneously.
- C. Diffusion Through a Selectively Permeable Membrane (SPM)
 - 1. Definition of SPM: A membrane that allows certain things through but not others.
 - Requirements for Diffusion through SPM
 - a. A gradient must be in place (the tendency).
 - b. The particle must have a way to pass through the membrane.
 - 3. Multiple solutes diffuse independently down their own gradients.
- IV. Osmosis: The Diffusion of Solvent (Water)
 - A. Osmosis is a Special Case of Diffusion.
 - B. Two Requirements for Osmosis
 - 1. The moving particle must be the **solvent** (water in biological systems).
 - 2. Movement must occur through a **selectively permeable membrane**.
 - C. Direction of Water Movement
 - 1. Water moves from high water concentration to low water concentration (down the water gradient).
 - 2. This is equivalent to movement from **low solute concentration** to **high solute concentration**.
 - D. Total Solute Concentration
 - 1. Only the water concentration gradient matters for osmosis.
 - 2. Total solute concentration is an indirect measure of water concentration.
 - E. Achieving Equilibrium in Osmosis
 - 1. Equilibrium occurs when the water gradient is zero.
 - 2. In the U-tube setup, equilibrium occurs when the force of gravity equals the osmotic pressure (no net osmosis).
- V. Tonicity and the Cell Environment
 - A. Definition: Tonicity refers to the tendency for osmosis to occur through a

cell membrane.

- B. Usage Rule: Tonicity terms must **only describe the cell's surroundings or environment**, never the cell itself.
- C. Hypotonic Environment (Hypo = Below/More Watery)
 - 1. Characteristics: Lower solute concentration/more watery than the cell.
 - 2. Osmosis: Water moves into the cell.
 - 3. Effects on Cells
 - a. Animal cells: Swells, bursts (**Lysis**).
 - b. Plant cells: Swells, pressurized (**Turgid**); ideal condition for the plant.
- D. Hypertonic Environment (Hyper = Above/Less Watery)
 - 1. Characteristics: Higher solute concentration/less watery than the cell.
 - 2. Osmosis: Water moves out of the cell.
 - 3. Effects on Cells
 - a. Animal cells: Shrivels (Crenation).
 - b. Plant cells: Plasma membrane collapses away from the cell wall (**Plasmolysis/Plasmolyzed**); fatal.
- E. Isotonic Environment (Iso = Same/Equal Wateriness)
 - 1. Characteristics: Wateriness is the same inside and outside the cell.
 - 2. Osmosis: Water moves in both directions at the same rate (no net volume change).
 - 3. Effects on Cells
 - a. Animal cells: This is the ideal condition.
 - b. Plant cells: Limp state (**Flaccid**); survivable but not ideal.