Lecture Outline: Sexual Life Cycles, Ploidy, and Meiosis

- I. Introduction to Meiosis and Sexual Life Cycles
 - A. Context and Placement
 - 1. Focuses on **DNA**, continuing from previous units
 - 2. Chapter 13 in the textbook, positioned before previously covered material
 - 3. Uses examples of the hydra and the redwood
 - B. Organism Comparison (Hydra vs. Redwood)
 - 1. Shared Trait: Both are eukaryotes
 - 2. Key Difference: Reproduction Type
 - a. Hydra: Asexual
 - b. Redwood: Sexual

II. Modes of Reproduction

- A. Asexual Reproduction
 - 1. Characteristics
 - a. Involves only one parent
 - b. Produces offspring that are **genetically identical** to the single parent and to each other
 - 2. Arguments For and Against
 - a. Advantage: Beneficial if the parent already has very high fitness and is perfectly adapted to its living conditions ("if it ain't broke, don't fix it")
 - b. Disadvantage: Offspring lack genetic diversity, making

them vulnerable if the environment changes suddenly

- **B.** Sexual Reproduction
 - 1. Characteristics
 - a. Involves two organisms or individuals (parents)
 - b. Never produces offspring that are genetically identical to the parent
 - c. Has the effect of amplifying genetic variation
 - 2. Advantage: Allows species to **adjust and adapt to changing environments** by producing varied offspring, increasing the chance that some will be well-adapted

III. Chromosomes and Ploidy

- A. Karyotype
 - 1. Definition: A **photographic image of all the chromosomes** in a specific individual or species
 - 2. Preparation: A photomicrograph is taken of a cell, and chromosomes are **arranged by size in homologous pairs** (largest to smallest)
 - 3. Optimal Viewing: Karyotypes are typically prepared from cells captured during **metaphase** of the cell cycle, when chromosomes are most compact and distinct
 - 4. Human Karyotype: Shows 23 pairs of chromosomes, totaling **46 chromosomes** (because humans have 23 kinds of chromosomes, with two of each kind)
- B. Chromosome Structure and Origin
 - Replicated Chromosome: Each chromosome appears as an "X" shape, composed of two identical sister chromatids connected at a centromere (formed after DNA replication in S-phase)
 - 2. Homologous Chromosomes (Homologues): Two

- chromosomes of the same type (e.g., both "number one" chromosomes), with one originating from the **mother** and the other from the **father**
- Genetic Identity: Homologous chromosomes are not genetically identical to each other because they come from different parents
- 4. Behavior: Homologues generally act independently in a cell, but they find each other and come together only during meiosis

C. Ploidy Definitions

- Clarification: Ploidy is **not the total number of chromosomes** in a cell, nor is it the number of types of
 chromosomes
- 2. "n": Represents the number of different kinds or types of chromosomes a species has (e.g., n=23 for humans)
- 3. Ploidy: Refers to how many of each type of chromosome are present in a cell
 - a. **Haploid (n)**: A cell that has **only one of each type** of chromosome; therefore, it contains "n" total chromosomes
 - b. Diploid (2n): A cell that has two of every chromosome
 type (a homologous pair for each type); therefore, it
 contains "2n" total chromosomes

IV. Sexual Life Cycles and Alternation of Generations

- A. Fundamental Processes in All Sexual Species
 - 1. All sexual species (and only sexual species) undergo a generation-to-generation alternation between two key biological processes: fertilization and meiosis
 - 2. Every sexual life cycle inherently features both a **haploid (n)** stage and a diploid (2n) stage

B. Fertilization

- 1. Definition: The union or fusion of two different cells (specifically sex cells) into one new cell
- 2. It is the hallmark that defines a sexual species
- 3. Sex Cells (Gametes): The two cells involved in fertilization are called **gametes** (unisex term); in humans, these are **sperm** (male gamete) and **eggs or ova** (female gamete)
- 4. Zygote: The single cell that results from the successful fusion of two gametes; it is considered the official starting point of a new individual
- 5. Effect on Ploidy: Fertilization results in a **doubling of the ploidy** because two haploid gametes (each 'n' chromosomes)
 combine to form a diploid zygote (2n chromosomes)
- 6. Evolutionary Challenge: If fertilization were the only process, ploidy would continually double each generation, leading to an unsustainable amount of DNA and causing the species to die off rapidly

C. Meiosis

- Definition: A counteracting process that cuts the ploidy in half
- 2. Purpose: To "undo" the doubling of ploidy accomplished by fertilization, ensuring that the ploidy remains constant across generations (alternating between diploid and haploid)
- 3. Meiosis is a process that evolved with, and is exclusive to, sexual species
- D. Variations in Sexual Life Cycles Among Major Eukaryotic Groups
 - 1. **Animals** (e.g., Humans)
 - a. Multicellular Stage: The adult individual is a **multicellular diploid (2n) organism**

- b. Gametes: Produced by meiosis, these are unicellular haploid (n) cells (sperm or eggs)
- c. Haploid Stage: There is **no multicellular haploid stage**; the haploid stage exists only as unicellular gametes
- d. Development: The diploid zygote develops into a multicellular animal through repeated mitotic cell divisions

2. Most Fungi

- a. Multicellular Stage: An adult fungus typically lives as a multicellular haploid (n) organism (its body cells are haploid)
- b. Gamete Formation: Since fungal body cells are already haploid, they produce gametes by **mitosis** (meiosis would not make sense as it halves ploidy)
- c. Diploid Stage: Fertilization produces a diploid (2n)
 zygote; unlike animals, this unicellular zygote
 immediately undergoes meiosis to produce haploid cells
- d. Development: These haploid cells then undergo **mitosis** multiple times to grow into new haploid multicellular fungi
- e. The **diploid stage is unicellular only**, while the haploid stage is multicellular

3. Plants (Alternation of Generations)

- a. Distinguishing Feature: Plants exhibit multicellularity in both their haploid and diploid stages within the same species
- b. **Sporophyte**: The **diploid (2n)**, spore-bearing plant, which is typically the familiar visible plant form
- c. **Gametophyte**: The **haploid** (n), gamete-producing plant, which for many plants lives inside the sporophyte but is a

distinct multicellular individual

 d. "Alternation of Generations" is the specific term for this unique life cycle where multicellularity occurs in both ploidy stages

V. Meiosis: Detailed Process and Comparison to Mitosis

A. Cell Types in the Human Body Relevant to Division

1. Somatic Cells

- a. Definition: Cells that make up the "body" (soma means body); they constitute almost the entire organism (e.g., skin cells)
- b. Ploidy: They are diploid (2n)
- c. Division: If they reproduce themselves, they undergo only mitosis (and cytokinesis) to produce two genetically identical diploid copies

2. Germline Cells

- a. Definition: A tiny minority of cells found exclusively in the **gonads** (ovaries in females, testes in males)
- b. Ploidy: They are also diploid (2n) to begin with
- c. Division: They undergo **both mitosis** (first, to maintain their small population over time) **and meiosis**
- d. Products: Germline cells that undergo meiosis produce haploid gametes (which are distinct from the germline cells themselves)
- B. Major Differences Between Mitosis and Meiosis

1. Ploidy Change

a. Mitosis: **Maintains ploidy**; the daughter cells have the same ploidy as the parent cell (e.g., diploid parent produces diploid daughters)

 b. Meiosis: Reduces or halves the ploidy (e.g., diploid parent produces haploid daughters); this critical ploidy reduction occurs specifically in Meiosis I

2. Number of Nuclear Divisions

- a. Mitosis: Involves a **single division event**, typically resulting in two daughter cells from one original cell
- b. Meiosis: Features two distinct rounds of nuclear division (Meiosis I and Meiosis II), ultimately resulting in four daughter cells from one original cell

C. Meiosis I (The Reductional Division)

- 1. Prophase I: Key Events
 - a. Synapsis: The two homologous chromosomes find each other and come together closely, forming a complex called a tetrad (or bivalent)
 - b. Crossing Over: A crucial process where non-sister chromatids (one chromatid from each homologous chromosome in the pair) physically cross over and exchange segments of DNA at points called chiasmata
 - c. Genetic Outcome of Crossing Over: This exchange creates **brand new**, **recombinant chromosomes** that have never existed before, featuring novel combinations of genetic material; this is a primary source of genetic variation
- 2. Metaphase I: The **homologous pairs (tetrads) line up** at the metaphase plate; for humans, 23 pairs (N pairs) line up
- 3. Anaphase I: The **homologous chromosomes separate** from each other and move to opposite poles of the cell
 - 1. Each separating chromosome still consists of **two sister chromatids** (it remains a replicated chromosome)

- 2. This separation is the specific event where the **ploidy is reduced** (e.g., a cell originally 2n now has two sets of n chromosomes, one set in each forming daughter cell)
- 4. Independent Assortment: Refers to the random orientation of each homologous pair as it lines up at the metaphase plate during Meiosis I
 - 1. The way one tetrad lines up (e.g., which parent's chromosome faces which pole) is **independent** of how other tetrads line up
 - This random alignment leads to a wide variety of combinations of maternal and paternal chromosomes being distributed into the resulting daughter cells, further contributing to genetic variation
 - 3. The number of different gametes possible solely due to independent assortment is calculated as **2**^n (where n is the number of chromosome types)

D. Meiosis II (The Equational Division)

- 1. Similarity to Mitosis: Meiosis II is mechanistically very similar to **mitosis**, as its purpose is to separate the remaining sister chromatids
- 2. Sub-steps: Includes Prophase II, Metaphase II, Anaphase II, and Telophase II
- 3. Metaphase II: **Individual replicated chromosomes line up** at the metaphase plate (similar to metaphase in mitosis)
- 4. Anaphase II: The **sister chromatids separate** from each other and move to opposite poles
 - It is important to note that after Meiosis I, due to crossing over, the "sister" chromatids may no longer be genetically identical to each other

E. Overall Result of Meiosis: From one original diploid cell that enters meiosis, the entire process (Meiosis I and Meiosis II combined) produces **four genetically distinct haploid cells** (which develop into gametes)

VI. Sources of Genetic Variation Amplified by Sexual Reproduction

- A. **Mutation**: The **original and fundamental source of all genetic variation**; it creates new versions of DNA sequences ("different cards in the deck") that sexual reproduction can then reshuffle
- B. Mechanisms within Sexual Reproduction that Drastically Amplify Variation
 - 1. Crossing Over (Occurs in Prophase I of Meiosis)
 - a. Generates an **effectively infinite number of possibilities** for new gene combinations
 - b. This is due to the presence of multiple chromosomes, millions of potential crossover points along DNA strands, and the ability for multiple crossover events to occur within a single homologous pair

2. Independent Assortment (Occurs in Metaphase I of Meiosis)

- a. Refers to the random and independent alignment of homologous chromosome pairs during Meiosis I
- b. For humans (with n=23 types of chromosomes),
 independent assortment alone can produce over 8 million
 (2^23) different kinds of gametes (sperm or eggs)
- c. While a large number, this is still a tiny fraction of the variation generated by crossing over

3. Random Fertilization

a. Involves the random union of a randomly chosen sperm (from the male) and a randomly chosen egg

(from the female) during fertilization

- b. Because both parents produce gametes with immense genetic variation (due to crossing over and independent assortment), the combination of these two randomly selected gametes results in a truly astronomical number of possible zygotic combinations
- c. This process explains why every human individual (except for identical twins, who originate from a single zygote splitting) is genetically unique