Lecture Outline: Thermodynamics, Metabolism, and Enzymes

1. Unit Introduction: Thermodynamics, Metabolism, and Enzymes

A. Biochemical Pathways

- 1. Multiple reactions connected in series (daisy-chained).
- 2. Product of one reaction serves as the reactant for the next.
- 3. Involves a starting substance and a final product.
- 4. Products made along the way are called **intermediates**.
- 5. Examples include cellular respiration and photosynthesis.

B. Definition and Forms of Energy

- 1. Energy is difficult to define; it is not a substance or a structure.
- 2. Often defined as the **capacity to do work**.
- 3. Organisms continuously process energy to live.
- 4. Energy exists in many forms (e.g., electrical energy, radiant energy/ light).
- 5. Two main categories:
 - a. **Potential Energy**: Stored energy, energy that could be used but is not at the moment.
 - (1) Chemical potential energy is found in food.
 - (2) Can be converted from kinetic energy (e.g., climbing stairs converts kinetic energy into gravitational potential energy).
 - d. Kinetic Energy: Energy of motion, energy that is being used.
 - (1) Example: A person jumping off a diving platform converts potential energy into kinetic energy.
 - (2) Easily interconvertible with potential energy.

II. Thermodynamics

A. **Definition**: The study of energy transactions and the flow of heat.

- B. **Thermodynamic Systems**: A defined part of the universe.
 - 1. The universe consists of the system and its surroundings.
 - 2. Categories of systems:
 - a. **Open System**: Exchanges both matter and energy with its surroundings (e.g., all organisms).
 - b. **Closed System**: Exchanges energy but not matter with its surroundings (e.g., a technically closed hydroelectric system).
 - c. **Isolated System**: Exchanges neither matter nor energy (a theoretical concept, not truly real, though a thermos attempts to be one).
- C. Laws of Thermodynamics (Focus on First and Second for biology)
 - 1. First Law of Thermodynamics (Law of Conservation of Energy):
 - a. Energy cannot be created or destroyed.
 - b. The total amount of energy in the universe remains constant.
 - c. Energy can be **transferred** (moved from one object to another) or **transformed** (changed from one form to another, e.g., radiant energy to heat energy).
 - 2. **Second Law of Thermodynamics** (Law of Entropy):
 - a. **Entropy** is defined as disorder or randomness.
 - b. In any energy transaction, the **entropy of the universe increases**; the universe is becoming more disordered over time.
 - c. In any energy transaction, **some energy is "lost" as heat**.
 - (1) "Lost" means unusable for useful work, not destroyed (which would violate the First Law).
 - (2) All energy transactions are at least somewhat **inefficient** (no 100% efficient transaction).
 - (3) Example: An internal combustion engine wastes most of its fuel's energy as heat.

III. Free Energy and Reaction Types

- A. Free Energy (G): Also known as Gibbs free energy.
 - 1. Represents the potential energy in a thermodynamic system.

2. The maximum amount of energy available to perform work.

B. Change in Free Energy (Delta G, ΔG): G final - G initial.

- 1. Negative Delta G: Indicates a loss of free energy.
 - a. Corresponds to a **spontaneous process**, meaning it can happen on its own.
 - b. Systems tend toward lower free energy, which is a more stable state (and generally higher entropy).
 - c. Examples: A person falling, diffusion, or the breakdown of a complex molecule into simpler parts.
 - d. Associated with **exergonic reactions** (energy is released, "energy out").
 - e. Associated with **catabolic reactions** (breakdown of larger, complex molecules into smaller, less complex ones, increasing disorder).
- 2. **Positive Delta G**: Indicates an increase in free energy.
 - a. Corresponds to a **non-spontaneous process**, meaning it requires an input of energy to occur.
 - b. Associated with **endergonic reactions** (energy is required/taken in, "energy in").
 - c. Associated with **anabolic reactions** (building larger molecules from smaller ones, decreasing disorder).

C. Organisms as Multi-Step Open Systems

- 1. Organisms are open thermodynamic systems that constantly exchange matter and energy.
- 2. Unlike a single-step energy release, organisms utilize energy from food through multi-step biochemical pathways.
- 3. This allows for a gradual release of energy, similar to a multi-step open hydroelectric system.

IV. ATP: The Energy Currency of the Cell

A. Structure of ATP (Adenosine Triphosphate):

- 1. An example of a **nucleotide triphosphate**.
- 2. Consists of a pentose sugar (ribose), a nitrogenous base (adenine),

and three phosphate groups.

- 3. Variations include ADP (adenosine diphosphate, two phosphates) and AMP (adenosine monophosphate, one phosphate).
- 4. More phosphates attached means more energy stored.

B. Role as Energetic Middleman:

- Organisms cannot directly use energy from fuel (food) for cellular processes.
- 2. Energy released from fuel is used to build ATP molecules, which store this energy temporarily.
- 3. ATP is then dismantled to release its stored energy, which directly powers cellular activities.

C. ATP Hydrolysis (Energy Release):

- 1. The process of breaking down ATP into ADP and an inorganic phosphate (P_i).
- 2. This is a **spontaneous**, **exergonic**, **and catabolic** process.
- 3. Requires water (hydrolysis reaction).
- 4. Releases energy that powers endergonic processes in the cell.
- 5. Example: Powering active transport like sodium-potassium pumps.
- 6. Also known as dephosphorylation.

D. ATP Synthesis (Energy Storage):

- 1. The process of adding a phosphate to ADP to form ATP.
- 2. This is a non-spontaneous, endergonic, and anabolic process.
- 3. Requires energy input, typically from the catabolism of fuels (food).
- 4. Removes water (dehydration reaction).
- 5. Also known as **phosphorylation**.

E. Coupling of Reactions:

- Cells perform endergonic processes by coupling them with exergonic processes.
- 2. The energy released from exergonic reactions (like ATP hydrolysis) is used to drive endergonic reactions (like building glutamine).

3. The overall coupled reaction must have a negative delta G to be spontaneous.

F. ATP Cycle:

- 1. Cells continuously cycle between higher-energy ATP and lower-energy ADP + P_i.
- 2. ADP is phosphorylated using energy from fuel to make ATP.
- 3. ATP is then hydrolyzed to release energy for cellular work, returning to ADP.
- 4. This cycle continuously matches the cell's energy demand.

G. Categories of Work Performed by ATP:

- Transport work: Movement of substances across membranes (e.g., active transport pumps).
- 2. **Mechanical work**: Movement of things within the cell along the cytoskeleton (e.g., motor proteins on microtubules).

V. Enzymes: Biological Catalysts

A. Nature of Enzymes:

- 1. Chemically, enzymes are **proteins**.
- 2. Functionally, they are **biological catalysts**.
- 3. They speed up chemical reactions, often by at least a million times.
- 4. Enzymes are not consumed or changed during a reaction; they are **reusable**.
- 5. While not strictly necessary for a reaction, they make spontaneous reactions happen fast enough to support life.

B. Enzyme-Substrate Interaction:

- 1. The reactants in an enzyme-catalyzed reaction are called **substrates**.
- 2. Substrates bind to a specific region on the enzyme called the **active** site.
- 3. Enzymes are highly **specific**, typically catalyzing only one type of reaction due to their unique shape.
- 4. The binding of a substrate to an enzyme induces a slight change in the enzyme's shape, known as **induced fit**, which enhances the fit and

facilitates the reaction.

5. This forms a temporary **enzyme-substrate complex**.

C. Mechanism of Action: Reducing Activation Energy (E_A):

- For a chemical reaction to occur, it must overcome an "energy hill" called the activation energy.
- 2. The transition state, where bonds are breaking and forming, has the highest free energy (G value) and is the most unstable.
- 3. Enzymes function by **reducing the activation energy**, making it easier for the reaction to proceed with available environmental energy (e.g., heat).
- 4. Enzymes **do not change the delta G** value of a reaction, as delta G is determined solely by the difference in free energy between reactants and products.
- 5. Ways enzymes reduce E_A :
 - a. For catabolic enzymes, they may stress or distort the substrate's bonds.
 - b. For anabolic enzymes, they may perfectly position multiple substrates for bond formation.

D. Factors Affecting Enzyme Activity:

- Enzymes have an optimum temperature and optimum pH at which they function best.
- 2. Deviations from the optimum can cause the enzyme's protein shape to change (**denaturation**), drastically reducing or eliminating its activity.
- 3. Optimal conditions vary depending on the specific enzyme and the organism it comes from (e.g., human enzymes vs. thermophilic bacterial enzymes).

E. Enzyme Regulation:

- 1. Control over reactions is exercised by controlling enzyme activity.
- 2. More efficient to regulate enzyme activity (on/off switch) than to destroy and rebuild enzymes.
- 3. Types of inhibition:

a. Competitive Inhibition:

- (1) An inhibitor molecule competes with the substrate for binding to the **active site**.
- (2) If the inhibitor binds, it blocks the active site, preventing the substrate from binding and the reaction from occurring.
- (3) Many drugs work as competitive inhibitors.

e. Non-competitive Inhibition (also called Allosteric Regulation):

- (1) An inhibitor (or activator) binds to a site on the enzyme other than the active site.
- (2) This binding causes a **conformational change** (shape change) in the enzyme.
- (3) In non-competitive inhibition, the shape change alters the active site, making it unsuitable for substrate binding.
- (4) Allosteric regulation can also be **allosteric activation**, where binding stabilizes the enzyme in an active shape.

j. Feedback Inhibition:

- (1) A common type of non-competitive inhibition (allosteric inhibition) in biochemical pathways.
- (2) The **end product** of a pathway acts as an allosteric inhibitor of an enzyme earlier in the pathway (often the first enzyme).
- (3) This prevents the unnecessary production of the end product and intermediates, conserving energy and materials.