Lecture Outline: Cell Membranes and Transmembrane Transport

I. Plasma Membrane Structure

A. Main Infrastructure: Phospholipid Bilayer

- 1. Forms spontaneously because phospholipids are amphipathic
- 2. Each phospholipid has:
 - a. Polar head: Contains phosphate, is hydrophilic (water-loving), faces water
 - b. Non-polar tails: Made of hydrocarbons (fatty acids), are
 hydrophobic (water-fearing), form the interior of the bilayer

B. Fluid Mosaic Model

- Membrane components (phospholipids, proteins) are **not chemically bonded** to each other and can move independently
- 2. **Lateral movement** of phospholipids within a layer is very rapid (~10 million times per second)
- 3. **Flip-flop** (movement between layers) is rare due to energy required to move polar heads through non-polar tails

C. Membrane Fluidity

- 1. Cells maintain correct fluidity based on conditions (e.g., temperature)
- 2. Adjusted by changing types of phospholipids in the membrane:
 - a. **Saturated fatty acids**: Have only single bonds between carbons, are straight, pack tightly, used to **tighten** membrane (e.g., in warm temperatures)
 - b. **Unsaturated fatty acids**: Used to make membrane **looser** (e.g., in cold temperatures)
- 3. **Cholesterol**: Also adjusts membrane fluidity and permeability by filling gaps

D. Membrane Polarity

- 1. The two sides of the membrane are different from each other
- 2. Proteins are more associated with the inner layer than the outer layer

II. Membrane Proteins

A. Integration and Movement

- Proteins are crucial for substances that cannot pass directly through the phospholipid bilayer
- 2. Proteins are held in place by hydrophobic/hydrophilic interactions with phospholipid tails and water
- 3. Inserted into the membrane via vesicles from the Rough ER and Golgi apparatus

B. Categories of Membrane Proteins

- Peripheral proteins: Associated with only one surface (monolayer) of the bilayer
- 2. **Integral proteins**: Stick at least partially through the thickness, associated with the hydrophobic tails
 - a. **Transmembrane proteins**: A special type of integral protein that sticks all the way through the thickness of the bilayer

C. Major Functions of Membrane Proteins

- Transport: Facilitate movement of specific substances across the membrane
 - a. **Channel proteins**: Form hollow tunnels that allow specific particles to pass through
 - b. **Carrier proteins**: Temporarily bind to a particle and change shape to move it across the membrane
- 2. Enzymatic Activity: Catalyze reactions while bound to the membrane
- 3. **Signal Transduction**: Act as **receptors** for chemical signals (ligands)
 - a. Signal binding causes a **conformational change** in the protein, relaying the message inside the cell without the signal entering
 - b. Requires **transmembrane proteins** to relay signals to the cell interior
- 4. Cell-to-Cell Recognition: Proteins (often with attached sugars) on the

- cell surface allow cells to recognize each other
- 5. **Intercellular Joining**: Proteins connect adjacent cells together (e.g., in desmosomes)
- 6. Attachment to Cytoskeleton and Extracellular Matrix (ECM):
 Anchor the membrane and provide structural support

III. Transport Processes Across the Membrane

- A. Three Major Categories
 - 1. Passive Transport
 - 2. Active Transport
 - 3. Vesicular Transport
- B. Passive Transport (Diffusion)
 - Does not require additional energy; energy is already built into the system in the form of a gradient
 - 2. Moves particles from **high concentration to low concentration** (down the gradient)
 - 3. Based on **random movement** (Brownian motion) but results in net directional movement
 - 4. Requirements for direct diffusion through the phospholipid bilayer:
 - a. Particle must be **small enough**
 - b. Particle must be **non-polar enough** (e.g., oxygen)
 - 5. Types of Diffusion:
 - a. **Simple Diffusion**: Particles move directly through the phospholipid bilayer (small, non-polar substances)
 - b. Facilitated Diffusion: Requires the help of a transport protein (channel or carrier) for particles that are too large or too polar; still passive and moves down the gradient

C. Active Transport

- 1. Requires additional energy (e.g., ATP)
- 2. Moves substances **against their gradient** (from low concentration to high concentration)
- 3. Always requires a **carrier protein** (cannot use a channel protein)

- 4. Often referred to as a pump
- 5. Types of Active Transport:
 - a. **Primary Active Transport**: Energy (e.g., ATP) is **directly spent** to power the pump and establish a gradient
 - (1) Example: **Sodium-potassium exchange pump**: Pumps sodium ions out and potassium ions in, both against their gradients
 - (2) Example: **Proton pump**: Pumps hydrogen ions out, creating a proton gradient (stored energy)
 - d. Secondary Active Transport (Co-transport): Uses the energy stored in a pre-existing gradient (established by primary active transport) to move another substance against its gradient
 - (1) Example: **Sucrose-proton co-transporter**: Protons diffuse down their gradient, dragging sucrose against its gradient without direct ATP consumption for sucrose
 - f. Co-transporters: Transport two different types of particles
 - (1) **Symporters**: Move both particles in the **same direction**
 - (2) **Antiporters**: Move particles in **opposite directions** (e.g., sodium-potassium pump)

D. Vesicular Transport

- 1. Involves the use of membrane-bound vesicles
- 2. Types based on direction:
 - a. Endocytosis: Inward vesicular transport
 - (1) **Phagocytosis**: Cell eating (taking in solid particles)
 - (2) **Pinocytosis**: Cell drinking (taking in liquid samples)
 - (3) **Receptor-mediated endocytosis**: Vesicles form only when specific particles bind to receptors
 - e. Exocytosis: Outward vesicular transport

IV. Osmosis and Tonicity

A. Osmosis

1. A special case of **diffusion**

- 2. Requirements for osmosis:
 - a. Movement of a **solvent** (always water in biology)
 - b. Movement through a selectively permeable membrane (allows water but not solutes)
- 3. Water moves from a place of **high water concentration** (low solute concentration) to a place of **low water concentration** (high solute concentration), down its gradient
- 4. Continues until equilibrium or balancing forces (e.g., gravity) are achieved

B. Tonicity

- 1. Refers to the tendency for osmosis to occur through a cell membrane
- These terms describe the cell's environment/surroundings, NOT the cell itself
- 3. Degrees of Tonicity:
 - a. Hypertonic environment:
 - (1) Has a **higher solute concentration** than the cell (less watery)
 - (2) Cell will **lose water** by osmosis
 - (3) Animal cells: Shrivel (crenation), can be fatal
 - (4) **Plant cells**: Plasma membrane collapses (**plasmolysis**), fatal

f. Hypotonic environment:

- (1) Has a **lower solute concentration** than the cell (more watery)
- (2) Cell will gain water by osmosis
- (3) **Animal cells**: Swell and burst (**lysis**), can be fatal (e.g., red blood cells; aquatic protists use contractile vacuoles to prevent this)
- (4) **Plant cells**: Swell and become **turgid** (pressurized), ideal condition for plant support (erection)

k. Isotonic environment:

- (1) Has the **same solute concentration** as the cell (same water concentration)
- (2) **No net movement of water**; water enters and leaves at the same rate
- (3) **Ideal for animal cells** (e.g., extracellular fluid homeostasis)
- (4) Plant cells: Can survive but are flaccid (limp), not ideal