Lecture Outline: Overview of Organic Chemistry

I. Specialness of Carbon

A. Organic vs. Inorganic Chemistry

- 1. Chemistry is divided into organic and inorganic branches.
- 2. Original definition of "organic": of organs, referring to living material.

 Early belief that organic and non-living substances were fundamentally different and could not be interconverted.
- 3. Current definition: carbon-containing.
 - a. Exceptions: graphite, diamond (pure carbon), and carbon dioxide are not considered organic.
 - b. Requirement: Must be a **compound** (elemental carbon is not organic).
 - c. Typical composition: Organic compounds must contain carbon, usually include hydrogen, and often oxygen and nitrogen.
- 4. All organisms are composed of organic compounds.
 - a. Not every molecule in an organism is organic (e.g., water).
 - b. Cells contain numerous organic compounds, including all four macromolecules.

B. **Hydrocarbons**

- 1. Definition: Compounds consisting **only** of **hydrogen** and **carbon** atoms.
- 2. Valence and Bonding:
 - a. Carbon's Valence:
 - (1) Has four valence electrons.
 - (2) Valence is four, meaning it must form four bonds.
 - (3) Termed tetravalence.

- (4) Carbon is the **smallest tetravalent atom**, making it highly versatile in bonding (e.g., four single bonds, two double bonds, one triple and one single bond).
- f. Hydrogen's Valence: One, meaning it forms one bond.
- 3. Types of Hydrocarbons (based on bond types):
 - a. **Alkanes**: Contain **only single bonds**. Names end in "-ane" (e.g., methane, ethane).
 - b. Alkenes: Contain at least one double bond. Names end in "-ene" (e.g., ethene).
 - c. Alkynes: Contain at least one triple bond. Names end in "-yne".
- 4. Nomenclature Prefixes (indicate carbon count): Meth- (1), Eth- (2), Prop- (3), But- (4), Pent- (5), Hex- (6), Hept- (7), Oct- (8), Non- (9).
- 5. Hydrocarbons as Fuel Sources:
 - a. Excellent fuels (e.g., gasoline) due to high energy content.
 - b. Undergo combustion reactions, both outside (e.g., engines) and inside the body.
- 6. Nature of Carbon-Hydrogen Bonds:
 - a. Form **nonpolar covalent bonds**.
 - b. Involve equal sharing of electrons.
 - c. Reason: Carbon and hydrogen have very similar (low) electronegativity values.
 - d. This makes hydrocarbons nonpolar, which is why they do not mix with polar substances like water.

C. Important Non-metal Elements for Molecules

- Hydrogen, Oxygen, Nitrogen, and Carbon are the most abundant nonmetals in organisms.
- 2. All are non-metals (located in the upper right of the periodic table, plus hydrogen).
- 3. These elements typically form **covalent bonds**, leading to the creation of **molecules**.

D. Urea as an Organic Compound Example

- 1. An organic compound that does not have direct carbon-hydrogen bonds.
- 2. Produced in the body to eliminate toxic ammonia, a byproduct of protein breakdown.
- 3. Historically significant as the first organic compound artificially synthesized from inorganic precursors, demonstrating that organic molecules could be created in the laboratory.

E. Classification of Hydrocarbons

- 1. Based on the **length of the carbon skeleton** (e.g., ethane vs. propane).
- 2. Based on the **presence of double or triple bonds** (alkanes, alkenes, alkynes).
- 3. Based on the **branching of the carbon skeleton** (linear vs. branched).
 - a. More carbons allow for more branching possibilities.
 - b. Can lead to **structural isomers** (e.g., butane and 2-methylpropane have the same formula but different arrangements).
- 4. Based on the **presence of rings** (carbon skeletons connecting back on themselves, e.g., cyclohexane, benzene).
 - a. Chemists use shorthand notation where angles represent carbon atoms and hydrogens are implied.

F. Lipids: Fats (Triglycerides/Triacylglycerol)

- 1. Fats are a type of lipid, but not all lipids are fats.
- 2. Structure: Composed of a glycerol molecule attached to three fatty acid tails.
- 3. High Energy Density:
 - a. Fatty acid tails are long hydrocarbon chains (excellent fuels).
 - b. Fats store more than twice the energy per gram compared to carbohydrates and proteins.
 - c. The body stores excess energy as fat to minimize weight, facilitating movement.

G. Isomers

- 1. Definition: Chemicals that have the **same exact chemical formula** but are **different substances** due to different arrangements of atoms.
- 2. Types of Isomers:
 - a. **Structural Isomers**: Differ in the arrangement of their carbon skeleton (e.g., branching vs. non-branching). Example: pentane and 2-methylbutane (both C5H12).
 - b. **Geometric Isomers**: Involve a **double bond**, which prevents rotation, holding atoms in fixed positions.
 - (1) **Cis isomer**: Two specific groups are on the **same side** of the double bond.
 - (2) **Trans isomer**: Two specific groups are on **opposite sides** of the double bond.
 - (3) These are distinct molecules with unique properties.

f. Enantiomers (Stereoisomers):

- (1) Examples of **chiral compounds**, meaning "handed" (like a left and right hand).
- (2) Are **mirror images** of each other that cannot be superimposed.
- (3) Require a central carbon atom bonded to **four different groups**.
- (4) Biological Importance: Many chemical signals (e.g., drugs, hormones) are enantiomers. Only one "handed" version typically works by binding to a specific receptor that also has a corresponding "handedness."
- (5) Notations: L (levo = left) and D (dextro = right), or S (sinestral = left) and R (recto = right).
- (6) Examples: S-ibuprofen is effective, R-albuterol is effective, L-dopa is produced by the body.

H. Steroid Hormones (e.g., Estradiol, Testosterone)

- 1. All steroid hormones are derived from **cholesterol**.
- 2. Small structural modifications to cholesterol lead to vastly different

- biological effects.
- 3. Their distinct functions arise from specific **functional groups** attached to the main ring structure, which allow for unique interactions with other molecules.

II. Functional Groups

- A. Definition and General Characteristics:
 - 1. Small collections of atoms that are part of a larger molecule.
 - 2. Impart specific **chemical functions** to the molecule by enabling interactions with other substances.
 - 3. Not complete molecules themselves; they connect to the "residue" (R), which represents the rest of the molecule.
- B. Specific Functional Groups (common in biology):

1. Hydroxyl Group (-OH):

- a. Structure: An oxygen atom bonded to a hydrogen atom and to the rest of the molecule (R-OH).
- b. Compounds containing a hydroxyl group are called **alcohols** (names often end in "-ol").
- c. **Polar** due to the high electronegativity of oxygen compared to hydrogen, leading to unequal sharing of electrons.

2. Carbonyl Group (>C=O):

- a. Structure: A carbon atom double-bonded to an oxygen atom.
- b. Two categories of carbonyl-containing compounds based on placement in the carbon skeleton:
 - (1) **Ketones**: The carbonyl group is located **within the carbon skeleton**, not at a tip. Names end in "-one" (e.g., acetone).
 - (2) **Aldehydes**: The carbonyl group is located **at a tip** of the carbon skeleton. Names end in "-al" (e.g., propanal).
- e. Important as major fuels in biology (e.g., in sugars).

3. Carboxyl Group (-COOH):

a. Structure: A carbon atom double-bonded to an oxygen (carbonyl) and also bonded to a hydroxyl group, specifically configured

together.

- b. Considered a single functional group.
- c. Compounds containing a carboxyl group are called **carboxylic acids** (or organic acids) because they exhibit acidic behavior.
- d. Biological Importance: All **amino acids** (protein building blocks) contain a carboxyl group.

4. Amino Group (-NH2):

- a. Structure: A nitrogen atom bonded to two hydrogen atoms and to the rest of the molecule (R-NH2).
- b. Nitrogen has a valence of three, forming three bonds.
- c. Compounds containing an amino group are called **amines**.
- d. Biological Importance: All **amino acids** contain an amino group. The name "amino acid" refers to the presence of both amino and carboxyl groups.

5. Sulfhydryl Group (-SH):

- a. Structure: A sulfur atom bonded to a hydrogen atom and to the rest of the molecule (R-SH).
- b. Similar to a hydroxyl group, but with sulfur instead of oxygen (sulfur is in the same periodic table group as oxygen and also has a valence of two).
- c. Compounds containing sulfhydryl groups are called **thiols** ("sulfur alcohols").
- d. Biological Importance:
 - (1) Present in the amino acid **cysteine**.
 - (2) In proteins, two sulfhydryl groups from different cysteine residues can react to form a **disulfide bridge** (S-S bond), which stabilizes and strengthens the protein's three-dimensional shape (e.g., in human hair).

6. Phosphate Group (-OPO₃²-):

a. Structure: A central phosphorus atom bonded to four oxygen atoms, one of which connects to the rest of the molecule.

- b. A charged functional group, highly significant in biology.
- c. Compounds containing a phosphate group are called **organic phosphates**.
- d. Biological Importance:
 - (1) **Phospholipids**: Major components of cellular plasma membranes.
 - (2) **ATP (Adenosine Triphosphate)**: The primary temporary energy storage molecule in all cells.
 - (3) **Nucleotides**: Every nucleotide (monomer of nucleic acids like DNA and RNA) contains a phosphate group.
 - (4) **Phosphorylation and Dephosphorylation**: The addition or removal of phosphate groups from proteins. This process changes protein shape, serving as a major mechanism for cells to **control protein function** (e.g., switching enzymes on or off quickly without destroying them).

7. Methyl Group (-CH3):

- a. Structure: A carbon atom bonded to three hydrogen atoms and to the rest of the molecule (R-CH3).
- b. Are ubiquitous ("space fillers") in molecules.
- c. Compounds containing methyl groups are called **methylated compounds**.
- d. Biological Importance:
 - (1) **Methylation and Demethylation of DNA**: Used to **control** gene expression.
 - (2) Methylation can make DNA inaccessible and unreadable to the cell, effectively turning genes off (can be permanent or reversible).

III. ATP (Adenosine Triphosphate) and Energy

- A. Structure and Components:
 - 1. ATP is the acronym for **Adenosine Triphosphate**.
 - 2. Composed of Adenosine (a nucleoside) with three phosphate groups attached.

- B. Nucleic Acids and Nucleotides:
 - 1. Nucleotide: A building block or monomer of nucleic acids (DNA and RNA).
 - 2. Components of a Nucleotide (three pieces):
 - a. A **pentose sugar**: Ribose (in RNA nucleotides) or Deoxyribose (in DNA nucleotides).
 - b. A **nitrogenous base**: (e.g., Adenine, Guanine, Cytosine, Thymine, Uracil).
 - c. A phosphate group.
 - 3. Macromolecule Classification:
 - a. Nucleic acids (DNA and RNA) are **macromolecules** and are classified as **polymers** (specifically, polynucleotides).
 - b. Three of the four major macromolecules are polymers: Nucleic Acids (polynucleotides from nucleotides), Polysaccharides (from monosaccharides), and Proteins (polypeptides from amino acids).
 - c. **Lipids** are macromolecules but **not polymers**.
- C. ATP as Energy Currency:
 - 1. Analogy: Functions like a "debit card" for energy within the cell.
 - 2. Energy Storage and Release:
 - a. AMP (adenosine monophosphate) has one phosphate.
 - b. ADP (adenosine diphosphate) has two phosphates.
 - c. ATP has three phosphates, representing a high energy balance.
 - d. Conversion of AMP to ADP to ATP requires energy, which is derived from the chemical bonds in food.
 - e. Breaking down ATP to ADP and inorganic phosphate (Pi) releases energy, which powers various cellular activities (e.g., moving molecules, muscle contraction).
 - f. This is a reversible reaction, constantly cycling in cells.
 - 3. Recycling and Regulation:
 - a. The body maintains a continuous pool of adenosine-based nucleotides (ATP, ADP, AMP).

- b. A buildup of AMP signals high energy demand, prompting the cell to increase cellular respiration in the mitochondria to produce more ATP.
- c. High ATP levels signal a decrease in energy production.

D. Inorganic Phosphate (Pi):

- 1. Refers to a phosphate group that is not connected to a carbon skeleton (i.e., cleaved from an organic molecule like ATP).
- 2. It is continuously recycled, being reattached to ADP or ATP.

IV. Review of Related Chemical Concepts

A. Entropy:

- 1. Roughly defined as disorder.
- 2. Organisms are highly ordered structures, possessing low entropy compared to their surroundings.
- 3. In accordance with the **Second Law of Thermodynamics** (entropy of the universe is always increasing), organisms maintain their high order by increasing the disorder of their non-living surroundings.

B. Orbitals and Electron Shells:

- 1. **Orbitals**: The smallest spaces where electrons are found; they are members of subshells.
- 2. Subshells are larger spaces composed of orbitals, and subshells themselves make up even larger spaces called **shells** or **energy levels**.
- 3. Types discussed: **s-orbitals** (spherical shape) and **p-orbitals** (dumbbell shape).
- 4. Each orbital can hold at most **two electrons**.
- 5. **Electron Shells/Energy Levels**: Correspond to **periods (rows)** on the periodic table.
 - a. First shell (Period 1) contains one s-orbital, holding a maximum of 2 electrons.
 - b. Second shell (Period 2) contains one s-orbital and three p-orbitals (total of four orbitals), holding a maximum of 8 electrons.

C. Valence Electrons vs. Valence:

- Valence electrons: The electrons located in the outermost shell of an atom.
- Valence: The number of additional electrons an atom needs to fill its outer shell. For non-metals, it also indicates the number of covalent bonds the atom will typically form.
 - a. Example: Oxygen has six valence electrons and a valence of two, meaning it forms two covalent bonds.

D. lons:

- 1. Charged atoms.
- 2. **Anion**: A **negatively charged ion**, formed when an atom **gains** one or more electrons.
- 3. **Cation**: A **positively charged ion**, formed when an atom **loses** one or more electrons.
- 4. Metals typically form cations by losing their valence electrons (e.g., Group 1 metals lose one electron to form a +1 cation; Group 2 metals lose two electrons to form a +2 cation).

E. Ionic Bonds and Salts:

- 1. **Salt**: Another term for an ionic compound.
- 2. The smallest possible bit of a salt is called a **formula unit** (in contrast to a molecule for covalent compounds).
- 3. Example: Magnesium fluoride (MgF₂) has a formula unit consisting of one magnesium ion (Mg²⁺) and two fluoride ions (F⁻).

F. Autoionization of Water:

- 1. Refers to the **self-ionization** of water molecules.
- 2. A small fraction of water molecules (H₂O) spontaneously split into a hydrogen ion (H⁺) (also called a proton) and a hydroxide ion (OH⁻).
- 3. This process is reversible.
- 4. In pure water at a specific temperature, the concentration of both H^+ and OH^- is 1 x 10^{-7} M, which is the basis for pH 7 on the pH scale.