Lecture Outline: Chemical Fundamentals

I. Basic Chemistry in Cell Biology

A. Chemical Reactions

- 1. Involve **reactants** transformed into **products**
- 2. Essentially a rearrangement of electrons
- 3. Can profoundly affect properties of substances
 - a. Example: Sodium (explosively reactive) + Chlorine (poisonous gas)
 - → Sodium Chloride (table salt, essential to life)
- 4. Involve breaking and forming of **chemical bonds**
- 5. Example of **emergent properties** (e.g., water from hydrogen and oxygen)

B. Elements and Compounds

- 1. All matter is made of **atoms**
- 2. **Element**: A substance made up of only one kind of atom
 - a. Exhaustively listed on the **periodic table of the elements** (over 100 known)
 - b. Defined by the number of **protons** (atomic number)
- 3. **Compound**: A substance made up of two or more kinds of atoms (e.g., water, sodium chloride)

C. Composition of Living Organisms

- Most abundant elements in the body: Oxygen, Carbon, Hydrogen,
 Nitrogen
- 2. These are key components of **biological macromolecules** (lipids, polysaccharides, polypeptides, polynucleotides)
- 3. Elements in living things are generally from the top rows of the periodic table (lighter elements)

D. Atomic Structure: Subatomic Particles

- 1. Atoms are inconceivably tiny structures
- 2. Composed of three primary **subatomic particles**:

a. Protons (p+)

- (1) Located in the **nucleus** (center of atom)
- (2) Positively charged (+1)
- (3) Number of protons determines the **element** (atomic number)

e. Neutrons (n)

- (1) Located in the **nucleus**
- (2) **Electrostatically neutral** (no charge)
- (3) Similar size and mass to protons
- (4) Number of neutrons can vary (zero or more)

j. Electrons (e-)

- (1) Located in the space **around the nucleus** (not in fixed orbits)
- (2) Negatively charged (-1)
- (3) Much smaller in size than protons and neutrons, but equal in charge magnitude
- 3. **Neutral Atom**: Has an equal number of protons and electrons, resulting in no overall charge
- 4. Ion: An atom that has an overall electrical charge
 - a. Formed by **gaining or losing electrons** (number of protons remains constant in normal chemistry)
 - b. **Anion**: Negatively charged ion (gained electrons)
 - c. **Cation**: Positively charged ion (lost electrons)

II. Electron Behavior and Chemical Bonds

A. Electron Energy Levels (Shells)

- 1. Space around the nucleus where electrons are found
- 2. Electrons occupy discrete energy levels (never between levels)

- 3. Lower energy levels are closer to the nucleus and are more stable
- 4. Each shell has a maximum electron capacity
- 5. Shells are subdivided into **subshells**, which are further subdivided into **orbitals**
- 6. Orbitals: Spaces where electrons are found
 - a. Can contain at most two electrons
 - b. Different kinds of orbitals with different shapes:
 - (1) **s orbitals**: Spherical; one per shell
 - (2) **p orbitals**: Dumbbell-shaped; three per shell (starting from second shell)
- 7. Electron capacity of shells:
 - a. Shell 1: Contains only one 1s orbital, holds a maximum of 2 electrons
 - b. Shell 2: Contains one 2s orbital and three 2p orbitals (4 orbitals total), holds a maximum of **8 electrons** (the "magic number eight")

B. Atomic Stability and Valence

- 1. Atoms achieve high **stability** by having completely filled outer shells or subshells
- 2. **Noble Gases** (Group 18 elements): Have full outer shells, making them inert (do not react chemically)
- 3. **Valence Shell**: The outermost electron shell of an atom that contains at least one electron
- 4. **Valence Electrons**: Electrons located in the valence shell; these are involved in chemical reactions
- 5. **Valence (of an atom)**: The number of additional electrons an atom needs to fill its valence shell/subshell to achieve stability (like a noble gas)
 - a. Fluorine has a valence of 1 (needs 1 more electron)
 - b. Hydrogen has a valence of 1 (needs 1 more electron to fill its first shell to 2)

C. Types of Chemical Bonds

1. Ionic Bonds

- a. Form between a metal and a non-metal
- b. Involve the **transfer of electrons** from the metal (forming a cation) to the non-metal (forming an anion)
- c. Oppositely charged ions attract each other electrostatically
- d. Weakest type of chemical bond
- e. Form **ionic compounds**, also called **salts** (e.g., sodium chloride)
- f. Ionic compounds form crystal lattices; not referred to as "molecules"
- g. Smallest piece of an ionic compound is a formula unit

2. Covalent Bonds

- a. Form between two **non-metals** (e.g., hydrogen, oxygen, nitrogen, carbon)
- b. Involve the sharing of valence electrons between atoms
- c. Much stronger than ionic bonds
- d. Form discrete **molecules** (e.g., H2O, O2)
- e. Each covalent bond consists of a pair of shared electrons
- f. Types of covalent bonds:
 - (1) **Single Covalent Bond**: One shared pair of electrons
 - (2) **Double Covalent Bond**: Two shared pairs of electrons (stronger than single)
 - (3) **Triple Covalent Bond**: Three shared pairs of electrons (strongest covalent bond)
- j. Valence of an atom can be seen as the number of covalent bonds it will form

3. Carbon's Special Role in Organic Chemistry

- a. Carbon exhibits **tetravalence** (valence of four), meaning it always forms four bonds
- b. High versatility in bonding, allowing for a limitless number of organic compounds
- c. Smallest, simplest atom with tetravalence, making it the basis of

carbon-based life

D. Polarity of Covalent Bonds and Molecules

- 1. **Electronegativity**: An atom's "greediness" or attraction for shared electrons
 - a. Increases across the periodic table from lower left to upper right (excluding noble gases)
 - b. Oxygen has high electronegativity
- 2. Non-polar Covalent Bond: Equal or near-equal sharing of electrons
 - a. Occurs between atoms with similar electronegativities (e.g., C-H bonds, O-O bonds in O2)
 - b. Results in no significant partial charges
- 3. **Polar Covalent Bond**: Unequal sharing of electrons
 - a. Electrons spend more time around the more electronegative atom, creating a slight negative charge (δ -)
 - b. The other atom develops a slight positive charge (δ +)
 - c. Example: O-H bonds in water (Oxygen is more electronegative than Hydrogen)
- 4. **Polar Molecule**: An overall molecule with a net separation of partial charges due to polar bonds and molecular shape (e.g., water)
 - a. Water's polarity is crucial for life (e.g., its properties as a solvent)
 - b. Water's bent shape (due to electron pair repulsion) contributes to its polarity

E. Hydrogen Bonds

- 1. Weak attractions between **polar molecules** (e.g., water and ammonia)
- 2. Occur between the slightly positive part of one molecule and the slightly negative part of another
- 3. **Not classified as chemical bonds** (less permanent, do not form new substances)
- 4. Responsible for properties like water's solubility for salts

III. Chemical Signals and Cellular Responses

A. Signal Molecules (Chemical Signals)

- 1. Particles that cause specific events to occur within an organism or cell
- 2. Function based on their unique three-dimensional shape
- 3. Must bind to a complementary-shaped **receptor protein** to elicit an effect

B. Receptors

- Proteins that can adopt a limitless number of shapes, allowing for high specificity to signals
- 2. Often membrane-bound, extending across the cell membrane

C. Types of Signals

- 1. **Endogenous Signals**: Produced naturally within the organism (e.g., endorphin, hormones like oxytocin)
- 2. **Exogenous Signals (Drugs)**: Originate outside the organism (e.g., morphine)
- 3. Exogenous drugs can mimic endogenous signals if their "business end" (the part that binds to the receptor) has a similar shape

D. Mechanism of Signal Transduction

- When a signal molecule binds to its receptor, the receptor undergoes a conformational change (change in shape)
- 2. This shape change in the receptor's internal part triggers subsequent events inside the cell, even if the signal molecule itself does not enter the cell

E. Ligands

- 1. General term for any molecule or particle that binds to a protein
- 2. Examples include:
 - a. Signal molecules binding to receptor proteins
 - b. Substrates binding to enzyme proteins
- 3. Binding of a ligand to a protein generally results in a **conformational change** in the protein