Lecture Outline: The Nervous System

I. Nervous System Overview

- A. Control System
 - 1. One of two control systems (nervous and endocrine) out of 11 total organ systems.
 - 2. Controls the other nine organ systems.
 - 3. Each control system also controls the other.
 - 4. Involved in maintaining homeostasis.

B. Signals

- 1. Both nervous and endocrine systems operate via signals.
- 2. **Endocrine system** uses only chemical signals (hormones), which are molecules broadcast throughout the body via the bloodstream.
- 3. **Nervous system** uses two categories of signals:
 - a. Electrochemical signals (action potentials).
 - (1) Changes in voltage carried by ions.
 - (2) Produced and transmitted only by excitable tissues (nervous and muscle tissue).
 - d. Chemical signals (neurotransmitters).
 - (1) Released from axon terminals and act locally, not entering the bloodstream.
 - (2) Can be the same chemical as a hormone, but functional difference in operation.
 - (3) Require appropriate protein receptors for effect.
- C. Major Functions (in order of occurrence)
 - 1. Sensory input: Information coming into the nervous system, specifically toward the central nervous system (CNS).
 - a. Via sensory neurons using action potentials.
 - b. Allows CNS to read current values of variables for homeostasis

comparison to a set point.

c. Sense vs. Sensation:

- (1) Sense/Sensory input: Any information coming toward the CNS, often unconsciously.
- (2) Sensation: High-level processing in the brain, leading to conscious awareness.
- 2. Integration: High-level processing of sensory information in the CNS.
 - a. Can be conscious (sensation) or unconscious (e.g., controlling heart beat, digestion).
 - b. Determines appropriate changes for homeostasis.
- 3. Motor output: Information sent from the CNS to target tissues.
 - a. "Motor" refers to movement, but not only skeletal muscles.
 - b. Can target all three muscle types (skeletal, cardiac, smooth) and glands.
 - c. Causes muscles to contract or glands to secrete.

D. Hierarchical Breakdown

1. Nervous System

- a. Central Nervous System (CNS): Brain and spinal cord.
- b. **Peripheral Nervous System (PNS)**: Everything else, including cranial and spinal nerves (bundles of neurons).
 - (1) **Sensory Division (Afferent)**: Carries incoming sensory information toward the CNS.
 - (2) **Motor Division (Efferent)**: Carries outgoing motor information away from the CNS toward target tissues/effector organs.
 - Somatic Division: Controls only skeletal muscles; under voluntary control. Single motor neuron from CNS to muscle.
 - Autonomic Division: Controls involuntary actions (cardiac muscle, smooth muscle, glands); behind-the-scenes. Two neurons in series with a synapse: presynaptic and

postsynaptic neurons.

- 1. **Parasympathetic Division**: Antagonistic to sympathetic; often decreases activity.
- 2. **Sympathetic Division**: Antagonistic to parasympathetic; often increases activity.

II. Nervous System Cell Types

A. Neurons

- 1. Excitable cells: Able to produce and transmit action potentials and release neurotransmitters.
- 2. "Business end" of the nervous system, doing the actual controlling.
- 3. A neuron is an individual cell; a nerve is a bundle of many neurons.
- 4. Neurons are either sensory or motor; they do not change direction of information.

B. Neuroglia (Glial Cells)

- 1. Non-excitable cells that support neurons.
- 2. Do not produce action potentials or neurotransmitters themselves.
- 3. **Central Nervous System Neuroglia** (found only in brain or spinal cord)

a. Astrocytes:

- (1) Star-shaped cells with elaborate plasma membranes.
- (2) Wrap around capillaries to form and maintain the bloodbrain barrier.
- (3) Protects CNS by controlling what leaks from bloodstream.

e. Microglial Cells:

- (1) Smaller than most neuroglial cells.
- (2) Act as phagocytes ("cell eaters") to engulf and destroy unwanted substances, protecting neurons.

h. Ependymal Cells:

- (1) Line interior surfaces of hollow parts of CNS (ventricles in brain, central canal of spinal cord).
- (2) Produce and secrete cerebrospinal fluid (CSF) at choroid

plexuses.

k. Oligodendrocytes:

- (1) Form myelin sheaths around axons of neurons in the CNS.
- (2) Myelin makes white matter appear white.
- (3) Speed up propagation of action potentials (insulation).
- (4) Oligo means "more than one but not many"; one oligodendrocyte covers parts of multiple axons.

4. Peripheral Nervous System Neuroglia (found only outside CNS)

a. Schwann Cells (Neurolemmocytes):

- (1) Form myelin sheaths around axons of neurons in the PNS.
- (2) Unlike oligodendrocytes, one Schwann cell covers only part of one axon.
- (3) Myelinated axons have gaps called Nodes of Ranvier, which are necessary for faster action potential propagation.

e. Satellite Cells:

- (1) Cover the cell bodies of neurons.
- (2) Least understood function.

III. Signal Transmission

- A. Resting Membrane Potential
 - 1. All living cells have a voltage difference across their plasma membrane.
 - 2. More positive charge outside, more negative charge inside.
 - 3. Caused by continuous operation of sodium-potassium exchange pumps, creating unequal distribution of ions (charge gradient).
- B. Action Potentials (Electrochemical Signals)
 - 1. Drastic, temporary change in membrane voltage.

2. Generation:

- a. Triggered by opening of voltage-gated sodium ion channels in the neuron membrane.
- b. Sodium ions (positive charge) rush into the cell, making the interior

less negative/more positive.

3. Propagation:

- a. Chain reaction where one action potential causes the next one beside it.
- b. Travels down the axon without diminishing in strength.
- c. Myelination significantly increases propagation speed by allowing "jumping" between Nodes of Ranvier.

4. Recovery:

- a. After action potential, sodium-potassium pumps re-establish resting membrane potential.
- b. Allows for subsequent action potentials (e.g., continuous muscle contraction).

C. Synapses

- 1. Site of communication between two excitable cells (neuron to neuron, or neuron to muscle/gland).
- Components: Presynaptic cell (upstream neuron), synaptic cleft (extracellular fluid space), postsynaptic cell (downstream neuron/ muscle/gland).

3. Neurotransmitter Release (Chemical Signal)

- a. Action potential reaches axon terminal of presynaptic neuron.
- b. Causes opening of voltage-gated calcium ion channels.
- c. Calcium ions (higher concentration outside) flow into the axon terminal.
- d. Incoming calcium ions directly trigger exocytosis of neurotransmitter-filled vesicles.
- e. Neurotransmitters are released into the synaptic cleft.

4. Neurotransmitter Binding and Ion Channels

- a. Neurotransmitters diffuse across synaptic cleft and bind to specific protein receptors on the postsynaptic membrane.
- b. Binding causes a conformational (shape) change in the receptor protein.

- c. This shape change opens chemically-gated ion channels in the postsynaptic membrane.
- d. lons (e.g., sodium) flow through these channels into the postsynaptic cell, causing a voltage change.
- e. In a postsynaptic neuron, if enough sodium ions enter, it generates a new action potential, continuing the signal.

5. Neurotransmitter Removal

- a. Neurotransmitters must be removed from receptors/synaptic cleft to allow precise signaling and relaxation.
- b. Enzymes (proteins) degrade neurotransmitter molecules, preventing them from staying bound to receptors indefinitely.
- c. Once released, the receptor returns to its original shape, closing the channel and allowing the postsynaptic cell to recover to resting potential.

IV. Brain Anatomy

A. Major Subdivisions

- 1. **Cerebrum**: Largest, most conspicuous part; responsible for higher functions ("the brain" in common terms).
 - a. Features gyri (ridges) and sulci (grooves/valleys).
 - b. Divided into lobes (e.g., occipital, temporal, parietal, frontal) named after overlying cranial bones.
 - c. Central sulcus: Major groove dividing anterior (motor) and posterior (sensory) processing areas.
 - (1) Precentral gyrus: Primary motor area (anterior to central sulcus).
 - (2) Postcentral gyrus: Primary somatic sensory area (posterior to central sulcus).
 - f. Hemispheres: Right and left halves, divided by longitudinal fissure.
 - (1) Not divided by motor/sensory function; both hemispheres have both.
- 2. **Cerebellum**: Second largest part; "little brain" due to similar wrinkled appearance.

- a. Crucial for "muscle memory" and fine motor control, smoothing out movements.
- 3. **Thalamus**: "Switchboard" for almost all sensory information processing before reaching cortex.
- 4. **Hypothalamus**: Located inferior ("hypo") to the thalamus.
 - a. Overlaps anatomically/physiologically with nervous and endocrine systems.
 - b. Contains neurons that control hormone release from the pituitary gland.
- 5. **Brain Stem**: Inferior part of the brain.
 - a. Includes Pons (larger bulge) and Medulla Oblongata (smaller, inferior bulge).
 - b. Medulla Oblongata marks the official end of the brain, continuous with spinal cord.

B. Cerebral Cortex

- 1. Superficial part of the cerebrum.
- 2. Different regions devoted to different functions (e.g., visual area, olfactory area).
- 3. **Somatotopy ("Homunculus")**: Mapping of body parts onto the cerebral cortex.
 - a. Distorted human representation reflects amount of brain power (neurons) devoted to a body part for sensation or motor control.
 - b. Hands, face, and tongue have disproportionately large areas.

C. Brain Fiber Types (Neurons)

- 1. **Association Fibers**: Connect different parts within the same cerebral hemisphere; do not cross over.
- Commissural Fibers: Cross over (decussate) to connect areas in opposite hemispheres.
 - a. Bundled commissural fibers form a commissure.
 - b. Corpus Callosum: The largest and most conspicuous commissure, connecting the two hemispheres.

- 3. **Projection Fibers**: Extend from the brain down into the spinal cord; can be very long.
- D. Ventricles and Cerebrospinal Fluid (CSF)
 - 1. Hollow, fluid-filled spaces within the brain and spinal cord (central canal).
 - 2. Provide shock absorption and cushioning for the CNS.
 - 3. Four ventricles in the brain (all interconnected):
 - a. Two Lateral Ventricles (symmetrical, off-midline).
 - b. Third Ventricle (on midline, superior to fourth, between thalamus halves).
 - c. Fourth Ventricle (on midline, in brain stem).
 - 4. Central Canal of spinal cord (connected to fourth ventricle).
 - 5. Cerebrospinal Fluid (CSF):
 - a. Produced by ependymal cells in choroid plexuses within ventricles.
 - b. Circulates through internal cavities and also surrounds the entire brain and spinal cord externally.
 - c. Drains into the bloodstream via arachnoid granulations to maintain constant pressure.

V. Peripheral Nervous System

- A. Structure of Nerves
 - Nerves are bundles of fascicles, and fascicles are bundles of nerve fibers (neurons, primarily axons).
 - 2. Connective tissue wrappings:
 - a. Epineurium: Surrounds the entire nerve.
 - b. Perineurium: Surrounds each fascicle.
 - c. Endoneurium: Surrounds each individual axon (nerve fiber).
- B. Cranial Nerves
 - 1. 12 pairs (24 total) of nerves connected directly to the brain.
 - 2. Can be sensory-only (afferent), motor-only (efferent), or mixed (containing both sensory and motor neurons).

C. Spinal Nerves

- 1. Nerves connected to the spinal cord.
- 2. Named by region of spinal cord (e.g., cervical, thoracic).
- 3. All paired (right and left).
- 4. Form plexuses (web-like networks) in certain regions.
- 5. Each spinal nerve is a two-way street but composed of one-way neurons:
 - a. Posterior (dorsal) root: Bundle of only sensory (afferent) neurons carrying incoming information to CNS.
 - b. Anterior (ventral) root: Bundle of only motor (efferent) neurons carrying outgoing information from CNS.
 - c. These roots join to form a mixed spinal nerve.
- D. Motor Divisions (Revisiting PNS Motor Division)

1. Somatic Motor Nervous System:

- a. Targets: All skeletal muscles.
- b. Pathway: Single motor neuron from CNS to skeletal muscle.

2. Autonomic Nervous System:

- a. Targets: Cardiac muscle, smooth muscle, glands.
- b. Pathway: Two neurons in series (presynaptic, postsynaptic) with a synapse between them.
- c. Subdivisions (Parasympathetic and Sympathetic) are antagonistic for fine control.