Lecture Outline: Muscle Tissue and the Muscular System

I. Functions of the Muscular System

A. Movement

- 1. Major function
- 2. Muscles pull on bones, allowing them to bend at joints

B. Protection

- 1. Layers of muscles, particularly in the anterior abdomen
- 2. Act as a sheath protecting abdominal viscera (organs)

C. Thermogenesis

- 1. Production of heat
- 2. Occurs during shivering: uncoordinated muscular contraction causes friction to raise body temperature
- 3. Part of homeostasis

II. Muscle Tissue Types and Characteristics

A. Three Muscle Tissue Types

- 1. Only skeletal muscle is included in the muscular system
- 2. Cardiac muscle: Makes up the heart; part of the circulatory system
- 3. **Smooth muscle**: Found in multiple systems; forms muscular linings of hollow organs (e.g., digestive system, uterus)

B. Muscle Cell Terminology (Interchangeable names for a muscle cell)

- 1. Muscle cell
- 2. Muscle fiber
- 3. Myofiber
- 4. Myocyte

C. Comparison of Muscle Tissue Types

1. Skeletal Muscle

- a. Shape: Cylindrical, non-tapering, do not branch
- b. Striations: Present and lined up
- c. Nuclei: Multi-nucleate (formed by fusion of multiple cells during development)
- d. Length: Extremely long cells, can be as long as the entire muscle
- e. Contraction:
 - (1) Can only actively shorten (pull, cannot push or actively lengthen)
 - (2) Requires a signal from a neuron (innervated)
- h. Control: Under conscious control
- i. Contraction Speed: Fastest; has a wide range of speeds (from very fast to intentionally slow)

2. Cardiac Muscle

- a. Shape: Cylindrical and branched
- b. Striations: Present, but not all lined up due to branching
- c. Contraction:
 - (1) Autorythmic: Contracts on its own with a certain frequency
 - (2) Can beat outside the body without neural connection
 - (3) Force and frequency of contraction are modulated by the nervous and endocrine systems
- g. Control: Automatic (not conscious)
- h. Contraction Speed: Slower than skeletal muscle; individual contraction speed is consistent, but frequency can be adjusted

3. Smooth Muscle

- a. Contraction:
 - (1) Autorythmic: Automatic (e.g., moving gut contents)
 - (2) Occurs in waves of much lower frequency (over minutes)
- d. Control: Automatic (not conscious)
- e. Contraction Speed: Slowest; contracts very gradually

III. Skeletal Muscle Structure and Function at Different Levels

- A. **Hierarchical Arrangement** (like a cable)
 - 1. Whole Muscle: Bundle of fascicles
 - a. Covered by **epimysium** (meaning "over muscle")
 - b. Same length as the fascicles and myofibers it contains
 - 2. **Fascicle**: Bundle of myofibers (muscle cells)
 - a. Covered by **perimysium** (meaning "around muscle")
 - 3. **Myofiber** (Muscle Cell): Bundle of myofibrils
 - a. Surrounded by **endomysium** (meaning "inside muscle")
 - 4. **Myofibril**: Organelle within a muscle cell; composed of repeating subunits called sarcomeres
 - a. As long as the whole muscle
 - b. Made of protein structures called myofilaments

B. Tendons

- 1. Connect muscle directly to bone
- 2. Composed of dense regular connective tissue
 - a. "Dense": Many fibers packed in a small area, making it strong
 - b. "Regular": Fibers aligned in parallel, making it strong in one direction (the direction of pull)

C. Sarcomere Anatomy and Contraction

- 1. **Myofilaments** (proteins within myofibrils)
 - a. Thick Filaments: Made of myosin protein
 - (1) Centered within the sarcomere (A band, H zone, M line)
 - (2) Have golf club-like **myosin heads** that can bind to thin filaments
 - d. Thin Filaments: Made of actin protein
 - (1) Anchored to Z disks at the ends of the sarcomere
 - (2) Extend toward the middle of the sarcomere
 - (3) Contain active sites where myosin heads can bind
 - h. Overlap exists between thick and thin filaments

2. **Contraction Mechanism** (Sliding Filament Model)

- a. Sarcomere shortens when the amount of overlap between thick and thin filaments increases
- b. Myofilaments (actin and myosin) themselves do not shorten
- c. Myosin heads pull the thin (actin) filaments toward the center of the sarcomere
- d. This action drags the Z disks closer together, shortening the sarcomere
- e. Simultaneous shortening of many sarcomeres along a myofibril leads to significant muscle shortening

IV. Molecular Basis of Muscle Contraction (Excitation-Contraction Coupling)

A. Motor Unit

- Comprises one motor neuron and all the skeletal muscle fibers it connects to
- 2. The axon of a motor neuron can branch, innervating multiple muscle cells
- 3. If the motor neuron fires, all connected muscle fibers contract simultaneously
- 4. **Small motor units**: Few branches, allow for delicate movements (e.g., fingers)
- 5. **Large motor units**: Many branches, recruit many muscle cells at once (e.g., thigh muscles)

B. Action Potential (AP)

- 1. An electrochemical signal; a drastic change in voltage across the plasma membrane
- 2. **Excitable Tissues** (able to produce and send APs): Muscle tissue and nervous tissue
- 3. APs propagate along the neuron axon and then along the muscle cell membrane like a chain reaction

C. **Neuromuscular Junction** (Synapse)

- 1. The specialized site where a neuron axon terminal communicates with a muscle cell
- 2. Features a tiny gap called the **synaptic cleft** (extracellular fluid)
- 3. Steps leading to muscle cell action potential:
 - a. An action potential reaches the neuron's axon terminal
 - b. Voltage change causes calcium ion channels to open in the axon terminal membrane
 - c. Calcium ions flow inward (influx) into the neuron
 - d. Calcium influx triggers **exocytosis** of vesicles containing neurotransmitters
 - e. **Acetylcholine (ACh)**, the specific neurotransmitter for skeletal muscle, is released into the synaptic cleft
 - f. ACh diffuses across the cleft and binds to specific **receptors** embedded in the skeletal muscle cell membrane
 - g. ACh binding causes sodium ion channels on the muscle cell membrane to open
 - h. Sodium ions flow inward (influx) into the muscle cell, causing a change in voltage
 - i. Sufficient sodium influx generates a new **action potential in the muscle cell**, which then propagates along its length
- D. Role of Calcium in Muscle Contraction (within the muscle cell)
 - 1. Before contraction, **regulatory proteins** block the active sites on actin filaments, preventing myosin binding
 - 2. The action potential propagating along the muscle cell triggers the release of calcium ions
 - 3. Calcium ions are released from the **sarcoplasmic reticulum** (a specialized endoplasmic reticulum within muscle cells) into the cell's interior
 - 4. Released calcium binds to the regulatory proteins, causing them to change shape and move away from the actin active sites
 - 5. Exposure of active sites allows myosin heads to bind to actin, forming a **crossbridge**

E. Power Stroke and Sarcomere Shortening

- 1. Once a crossbridge forms, the myosin head changes its angle/shape (the "power stroke")
- 2. This pulls the attached actin filament toward the center of the sarcomere
- 3. Since actin filaments are anchored to Z disks, the Z disks are pulled closer, shortening the entire sarcomere

V. Muscle Abnormalities

A. Muscle Cramps

- 1. Usually caused by an ionic imbalance
- 2. Results in abnormal action potentials being generated in muscle cells without proper neural input

B. Muscle Spasms

- Occur when a neuron fires unintentionally, causing the muscle to contract
- 2. Muscle simply obeys the signal from the neuron

VI. Muscle Attachment Points and Body Movements

A. Attachment Points

- 1. Skeletal muscles typically cross a movable joint
- 2. Connect to bones via tendons at two points:
 - a. **Origin**: The attachment point on the bone that remains relatively stationary during contraction
 - b. **Insertion**: The attachment point on the bone that moves when the muscle contracts

B. **Major Kinds of Motions** (often occur in antagonistic pairs)

1. Flexion and Extension

- a. Occur in the sagittal plane
- b. **Flexion**: Decreases the angle of a joint (e.g., bending elbow, nodding "yes")
- c. **Extension**: Increases the angle of a joint, undoing flexion (e.g., straightening elbow)

d. **Hyperextension**: Extension beyond the anatomical position (possible in some joints)

2. Rotation

a. Pivoting motion (e.g., shaking head "no" between atlas and axis vertebrae, rotating femur)

3. Abduction and Adduction

- a. Occur in the frontal (coronal) plane
- b. **Abduction**: Movement of a body part farther from the midline (e.g., lifting arm out to the side, spreading fingers)
- c. **Adduction**: Movement of a body part toward the midline, undoing abduction (e.g., bringing arm back to side, bringing fingers together)

4. Circumduction

- a. Movement of a limb in a cone shape
- b. Combination of flexion, abduction, extension, and adduction
- 5. **Dorsiflexion and Plantar Flexion** (specific to the foot/ankle)
 - a. Occur in the sagittal plane
 - b. **Dorsiflexion**: Moving the ankle so toes are closer to the front of the body (pulling foot up)
 - c. **Plantar Flexion**: Moving the ankle so toes are farther from the front of the body (pointing toes, standing on balls of feet)
- 6. Eversion and Inversion (specific to the foot)
 - a. Occur in the frontal (coronal) plane
 - b. **Eversion**: Pointing the sole of the foot laterally (outward)
 - c. **Inversion**: Pointing the sole of the foot medially (inward); excessive inversion can cause a "rolled ankle"
- 7. **Pronation and Supination** (specific to the forearm)
 - a. **Supination**: Palms facing anteriorly (anatomical position); radius and ulna are parallel
 - b. **Pronation**: Palms facing posteriorly/downward; the radius twists over the ulna, crossing the bones

- 8. **Opposition and Reposition** (specific to the thumb)
 - a. **Opposition**: Bringing the thumb together with the tip of any other finger
 - Reposition: The opposite action, moving the thumb away from the fingers

VII. Specific Muscles of the Body (Lab Material)

A. Muscles of the Head and Neck

1. **Orbicularis Oculi**: Muscle around the eye (oculi refers to eye, orbicularis refers to spherical shape)

2. Masseter:

- a. Muscle of mastication (chewing)
- b. Extremely strong for its size
- c. Originates on the zygomatic arch (part of the temporal bone)
- d. Inserts on the mandible
- e. Action: Pulls the mandible superiorly (upward)

3. Sternocleidomastoid:

- a. Long name reflecting attachment points:
 - (1) "Sterno": Sternum
 - (2) "Clydo": Clavicle
 - (3) "Mastoid": Mastoid process (a breast-like projection of the temporal bone)

B. Muscles of the Torso and Upper Limb

1. Deltoid:

- a. "Deltoid": Means triangular shape (like the Greek letter Delta)
- b. Covers the shoulder region

2. Pectoralis Major:

- a. "Pectoralis": Refers to the chest or breastplate region
- b. "Major": The larger and more superficial of the pectoralis muscles

3. Biceps Brachii:

a. "Brachii": Refers to the arm (brachium)

b. "Biceps": A singular term meaning "two heads," referring to its two heads of origin (attachment points) superiorly

4. Rectus Abdominis:

- a. "Abdominis": An abdominal muscle
- b. "Rectus": Means straight; its fibers are arranged straight along the long axis
- c. Contributes to protection of abdominal organs

5. External Oblique:

- a. Superficial abdominal muscle, located on either side of the rectus abdominis
- b. "Oblique": Refers to its diagonal fiber arrangement (forms a V-shape)
- c. Part of a three-layered abdominal wall (internal oblique and transversus abdominis are deeper but not required)

C. Muscles of the Lower Limb

1. Sartorius:

- a. Longest muscle in the body
- b. Originates on the coxal bone (ischium) and extends diagonally across the thigh to the medial part of the knee
- c. "Sartorius" (tailor's muscle): Named because its action allows crossing the legs, similar to a tailor's sitting posture

2. Quadriceps Femoris Group:

- a. "Quadriceps": Refers to the four muscles in this group
- b. "Femoris": Refers to its location in the thigh (femur region)
- c. Primary action: Straightens the knee
- d. Three individual muscles to know within this group:
 - (1) Rectus Femoris: Straight down the front of the thigh
 - (2) **Vastus Lateralis**: Large muscle positioned laterally on the thigh
 - (3) **Vastus Medialis**: Large muscle positioned medially on the thigh

3. Gastrocnemius:

- a. Posterior leg muscle (calf muscle)
- b. "Gastro": Means belly, referring to its prominent "bellies" or fatty parts
- c. Connected to the **calcaneal tendon** (Achilles tendon)
- d. The calcaneal tendon attaches to the calcaneus (heel bone)
- e. Action: Causes **plantar flexion** (e.g., standing on the balls of the feet)