Lecture Outline: The Skeletal System

I. Functions of the Skeletal System

- A. **Support**: Provides the framework for the body
- B. **Protection**: Encloses important organs, like the brain (cranium) and heart/lungs (rib cage)
- C. Movement: Provides stiff bones for muscles to pull on, enabling body movement
- D. **Breathing**: Muscles pull on ribs to change lung volume, facilitating air intake and exhalation
- E. **Mineral Storage**: Serves as a large reservoir of **calcium and phosphate** in the form of hydroxyapatite (calcium phosphate)
 - 1. Regulates blood calcium levels as part of homeostasis
 - 2. Calcium ions are crucial for heart beating and skeletal muscle movement
 - 3. Phosphate is essential for many reasons, including being a component of plasma membranes
- F. **Hemopoiesis**: Production of **blood cells** (red and white) occurs in the marrow within bones

II. Bone Tissue and Structure

A. Bone Composition

- 1. Mainly **hydroxyapatite** (calcium phosphate), which makes bones hard
- 2. Hardest part of the body, second only to teeth enamel

B. Types of Bone Tissue

1. Compact Bone

- a. Much less space, therefore denser and stronger
- b. Forms the superficial layer on any bone
- c. Composed of cylindrical structures called osteons

2. Spongy Bone

- a. Located deep to compact bone
- b. Has many pores/holes, giving it a sponge-like appearance, but it is still hard and strong
- c. Makes bones lighter while retaining strength
- d. Spaces contain **marrow** (red and yellow)
- e. Composed of tiny beam-like structures called trabeculae

C. Bone Cells

- Osteoblasts: Cells that create the extracellular matrix material
- 2. **Osteocytes**: Mature bone cells that **maintain** the extracellular matrix; locked in lacunae (little lagoons)
- 3. **Osteoclasts**: Cells that **degrade** the extracellular matrix, breaking down hydroxyapatite to release calcium when needed

D. Osteons (in Compact Bone)

- 1. **Central Canal**: Passageway for blood vessels and nerves
- 2. **Lamellae**: Several concentric layers of hard material surrounding the central canal

III. Bone Development and Dynamics

A. Bone Shapes

1. **Long bones**: Longer than they are wide (e.g., humerus, femur)

- 2. **Flat bones**: Thin and flattened (e.g., sternum)
- 3. **Short bones**: Cube-shaped, not particularly long in any dimension (e.g., ankle/tarsal bones, wrist/carpal bones)
- 4. **Irregular bones**: Complex, irregular shapes (e.g., vertebrae)

B. Long Bone Anatomy

- 1. **Diaphysis**: The long, central shaft of the bone
- 2. Epiphysis: The two tips at either end of the long bone
- 3. **Medullary Cavity**: An open, deep internal area within thicker bones, which contains marrow

C. Ossification (Bone Hardening)

- Initial skeleton (pre-birth) is primarily made of pliable cartilage (mostly hyaline cartilage) or connective tissue membranes (skull)
- 2. **Epiphyseal Plate**: A cartilage plate between the diaphysis and epiphysis in growing bones, where new material is added to make the bone longer
- 3. **Epiphyseal Line**: Formed when the epiphyseal plate ossifies (turns into bone) around age 20, indicating that longitudinal growth has stopped

D. Bone Remodeling

- 1. Bones are **dynamic** and continuously being partially destroyed and rebuilt throughout life
- 2. Involves both **osteoclasts** (tearing down old material) and **osteoblasts** (building new material)
- 3. Bones adapt to stress; for example, trabeculae can be added and rearranged to withstand greater force

E. Fracture Healing (Four Stages)

1. **Hematoma Formation**: A large blood clot (hematoma) forms

- at the fracture site due to severed blood vessels, providing immediate but weak support
- 2. **Fibrocartilage Formation**: The hematoma is gradually replaced by fibrocartilage, which is stronger than a blood clot
- 3. **Ossification of Fibrocartilage**: The fibrocartilage turns into bony material (a bony callus), making the bone strong enough for use
- 4. **Remodeling**: The bony callus is gradually broken down and reshaped to restore the bone to its original form, often resulting in a site stronger than it was originally

F. Fetal Skeleton Development

- 1. In a fetus, dark areas on X-rays indicate bony material, while lighter areas are still cartilage
- 2. **Fontanelles**: Soft spots in a baby's skull, consisting of dense connective tissue membranes, which eventually ossify to form skull sutures

IV. Divisions of the Skeleton

A. Overall Bone Count in Adulthood: 206 bones

- 1. Humans are born with more bones that fuse over time (e.g., mandible, frontal bone)
- 2. Over half (106) of the bones are in the feet and hands
- 3. 56 bones (over a quarter) are in the fingers and toes (phalanges), allowing for dexterity
- B. Axial Skeleton: Forms the central long axis of the body

1 Skull

- a. Total: 22 bones
- b. **Cranium (Brain Case)**: 8 bones that are in direct contact with the brain, forming the protective brain case

- c. **Facial Bones**: 14 bones that attach to the front of the cranium
- d. Examples of skull bones to know:
 - (1) Parietal bone (forms side walls of cranium, "parietal" means wall)
 - (2) Temporal bone (orange, near temples, often first place for graying hair, indicating time)
 - (3) Occipital bone (unpaired, at the back, may have a larger protuberance in males)
 - (4) Frontal bone (unpaired, forms forehead, starts as two halves in fetus)
 - (5) Zygomatic bone (blue, cheekbone, forms part of the zygomatic arch, which is like a yoke)
 - (6) Maxillae (2, upper jawbones, stay separate)
 - (7) Mandible (lower jawbone, starts as two halves, fuses into one)

2. Vertebral Column (Spine)

- a. Encloses and protects the **spinal cord** (part of the central nervous system)
- b. Made of many individual bones (vertebrae) whose slightly movable joints allow overall flexibility
- c. Categories of Vertebrae:
 - (1) **Cervical Vertebrae (C1-C7)**: **7** bones in the neck ("cervix" means neck/narrowing)
 - (2) **Thoracic Vertebrae (T1-T12)**: **12** bones in the chest ("thorax" means chest), which articulate with the ribs
 - (3) Lumbar Vertebrae (L1-L5): 5 bones in the lower back, typically have the largest bodies due to weight-

bearing

- (4) **Sacrum**: A single bone fused from **5 sacral vertebrae**, part of the pelvic girdle
- (5) **Coccyx**: A single bone fused from **2-4 coccygeal bones**, also known as the tailbone
- i. Normal Curvatures: The vertebral column is not straight but has natural curves in the cervical, thoracic, and lumbar regions

j. Curvature Disorders:

- (1) Scoliosis: Abnormal sideways curvature
- (2) **Kyphosis**: Exaggerated thoracic curvature (hunchback)
- (3) **Lordosis**: Exaggerated lumbar curvature

n. Vertebra Structure:

- (1) **Vertebral Foramen**: The central hole in each vertebra, which collectively forms a tunnel for the spinal cord; the hole gets smaller inferiorly
- (2) **Body**: The main weight-bearing part of the vertebra; gets larger inferiorly
- (3) **Intervertebral Discs**: Tough pads of fibrocartilage located between vertebral bodies, allowing slight movement
- (4) **Herniated Disc**: Occurs when part of an intervertebral disc bulges out and presses on spinal nerves, causing pain (discs do not "slip")

s. Special Cervical Vertebrae:

(1) **C1 (Atlas)**: The superior-most vertebra, named after Atlas from mythology as it holds up the skull; has no body, allows nodding ("yes" movement)

(2) **C2 (Axis)**: Has a pivot point (dens) that articulates with the atlas, allowing for twisting/rotation of the head ("no" movement)

v. Distinguishing Vertebrae Types:

- (1) Cervical vertebrae are the only ones with three holes (one vertebral foramen and two additional holes for blood vessels)
- (2) Thoracic vertebrae (side view) resemble giraffe heads
- (3) Lumbar vertebrae (side view) resemble moose heads, and have very large bodies
- 3. Ribs: 12 pairs (24 total) associated with thoracic vertebrae
 - a. **True Ribs (Pairs 1-7)**: Connect directly to the sternum via their own band of hyaline cartilage
 - b. False Ribs (Pairs 8-12): Do not connect directly to the sternum
 - (1) Pairs 8-10: Have cartilage that connects to the cartilage of other ribs
 - (2) Pairs 11-12 (Floating Ribs): Connect only to the vertebrae and have no anterior connection
- 4. **Sternum**: Breastbone, central bone in the chest to which true ribs and some false ribs indirectly attach
- C. **Appendicular Skeleton**: Consists of limbs and the structures that attach them to the axial skeleton
 - Pectoral Girdle: Forms a ring (though not complete) around the neck/shoulders
 - a. Clavicles (2): Collar bones
 - b. Scapulae (2): Shoulder blades
 - 2. Upper Limbs

- a. **Humerus**: The single bone of the arm (brachium), from shoulder to elbow
- b. Antibrachium (Forearm) Bones (2):
 - (1) **Radius**: Runs parallel to the ulna in anatomical position; rotates for pronation (palm down) and supination (palm up)
 - (2) **Ulna**: Forms the hinge joint at the elbow with the humerus
- e. Manus (Hand) Bones:
 - (1) **Carpus (Wrist)**: The proximal part of the hand, made of **8 carpal bones** arranged in two rows
 - (2) **Metacarpals**: The 5 bones of the palm, beyond the carpals
 - (3) **Phalanges (Fingers/Digits)**: The 14 bones of the fingers (2 in the thumb, 3 in each of the other four fingers)
- 3. **Pelvic Girdle**: Forms a complete ring, attaching the lower limbs to the axial skeleton
 - a. Composed of **two Ossa Coxae** (pelvic bones) and the **sacrum** (part of the axial skeleton)
 - b. **Ossa Coxae**: Each pelvic bone fuses from three parts in adulthood:
 - (1) Ilium: The superior and largest part
 - (2) **Ischium**: The posterior, rounded part that one sits on ("sitting bones")
 - (3) **Pubis**: The anterior part, where the two pubes meet in the front
 - f. Sexing a Skeleton using the Pelvic Girdle:
 - (1) Female pelvis has a more **U-shaped angle** where

the pubes meet, creating a wider birth canal

(2) Male pelvis has a more **V-shaped angle** where the pubes meet

4. Lower Limbs

- a. **Femur**: The single bone of the thigh (proximal part of lower limb), and the **largest bone** in the skeleton
- b. **Leg Bones** (from knee to foot):
 - (1) **Tibia**: The larger of the two leg bones, bears all the weight from above and connects to the femur
 - (2) **Fibula**: The smaller bone, situated lateral to the tibia; does not bear weight but supports when shifting to the side, connecting only to the tibia and tarsal bones

e. Pedis (Foot) Bones:

- (1) **Tarsus (Ankle)**: The proximal part of the foot, made of **7 tarsal bones** (one fewer than carpal bones)
- (2) **Metatarsals**: The 5 bones that make up the arch of the foot, beyond the tarsals
- (3) **Phalanges (Toes/Digits)**: The 14 bones of the toes (2 in the great/big toe, 3 in each of the other four toes)