Lecture Outline: Histology

I. Cells

- A. Introduction to Cells
 - 1. Focus on human (animal) cells
 - 2. First unit contains introductory information, followed by organ system study
- B. Cell Types
 - 1. Eukaryotic cells: Have a true nucleus and other membrane-bounded organelles
 - a. Humans are eukaryotes
 - 2. **Prokaryotic cells**: **Do not have a true nucleus** or other membrane-bounded organelles
 - a. Only membrane is the plasma membrane
 - b. Consist of a single compartment
- C. Organelles (Little Organs within a Cell)
 - 1. Nucleus
 - a. Contains **DNA**
 - b. Example of a **doubly membrane-bounded organelle**
 - c. Double membrane called the nuclear envelope
 - d. Nuclear envelope is perforated by **nuclear pores** for transport
 - e. Outer membrane of nuclear envelope is continuous with endoplasmic reticulum
 - 2. Endoplasmic Reticulum (ER)
 - a. Membrane is continuous with the nuclear envelope

- b. Two parts with different functions:
 - (1) Rough Endoplasmic Reticulum (Rough ER)
 - Appearance: Studded with ribosomes, giving it a "rough" look
 - 2. Function: **Modifies newly made proteins** (e.g., sticking things on, cutting things off)
 - (2) Smooth Endoplasmic Reticulum (Smooth ER)
 - 1. Appearance: Lacks ribosomes, looks like tubes
 - Functions: Produces lipids and is a storage place for substances like calcium ions (important for muscle function)

3. Golgi Complex (Golgi Apparatus/Golgi)

- a. Structural similarity to rough ER but distinct function
- b. Function: Acts as a receiving and shipping center
- c. Receives proteins in **vesicles** (membrane-bound bags) from the rough ER
- d. Figures out destination of proteins (secretion, plasma membrane incorporation, or other organelles)
- e. Repackages proteins into new vesicles that bud off its membrane

4. Mitochondria (Mitochondrion singular)

- a. Bean-shaped organelles
- b. Example of a **multiply membrane-bounded organelle** (has two membranes)
- c. Function: "Powerhouse of the cell" â€" where most ATP (energy storage from food) is made through cellular respiration
- d. Dismantles fuel molecules completely, producing carbon

dioxide as a byproduct

5. Lysosomes and Peroxisomes

a. Lysosomes

- (1) Meaning: "Splitting body" (lyse = split, some = body)
- (2) Function: Site of digestion or breakdown of molecules using digestive enzymes
- (3) Enzymes are contained to prevent damage to the rest of the cell

e. Peroxisomes

(1) Function: Deal with **harmful peroxides** that naturally build up, converting them into safer substances

6. Cytoskeleton

- a. Meaning: "Cell skeleton" (cyto = cell, skeleton = support structure)
- b. Function: Provides **support and maintains order** within the cell
- c. Made of three major kinds of fibrous proteins:
 - (1) Microtubules: Widest diameter
 - (2) **Microfilaments**: Narrowest diameter (thinnest)
 - (3) Intermediate filaments: Intermediate diameter

7. Ribosomes

- a. Tiny organelles (brown dots in pictures)
- b. **Not membrane-bounded organelles** (present in prokaryotic cells as well)
- c. Function: **Assemble proteins** by stringing together amino acids in a specific order based on genetic code

8. Cytosol

- a. The liquid part of the cytoplasm
- b. Cytoplasm is all the stuff inside the cell but outside of other organelles
- c. Site where much of the chemistry of life occurs

D. Plasma Membrane

- 1. Structure
 - a. Main substructure: Two layers of phospholipids (phospholipid bilayer)
 - (1) Phospholipids have a polar head (likes water) and two non-polar tails (avoid water)
 - (2) Self-assemble in water to form the bilayer, with tails facing each other and heads facing outward
 - (3) Crucial for the formation of proto-cells
 - e. **Membrane-bound proteins**: Embedded within the membrane, performing various jobs
 - (1) Allow substances that cannot directly pass through the phospholipid bilayer to enter or exit the cell
 - (2) Different from "membrane bounded" organelles, as they are part of the membrane itself
- 2. Intercellular Junctions (Between Cells)

a. Desmosomes

- (1) Complexes of proteins connecting plasma membranes of adjacent cells
- (2) Function: Act as "spot welds" to **keep cells** together and maintain tissue integrity

d. Tight Junctions

(1) More complex protein complexes that go all the

way around cells

- (2) Function: Form **blockades between cells**, preventing particles from passing through the spaces between cells in a multi-cellular membrane (e.g., epithelium)
- (3) Ensure substances must enter cells to pass through the tissue

h. Gap Junctions

- (1) Protein complexes forming **little tunnels** between cells
- (2) Function: Allow for **intercellular communication** by permitting certain particles to pass directly between cells
- (3) Important for synchronous actions (e.g., heart contraction through ion flow)

E. Transport Across the Membrane

1. **Passive Processes** (Energy already contained within the system; no additional energy needed)

a. Diffusion

- (1) The spreading out of particles from an area of **higher concentration to lower concentration** (down their gradient)
- (2) Occurs due to random motion of particles

d. Simple Diffusion

- (1) Directly through the phospholipid bilayer
- (2) Requires particles to be **small enough** and **non-polar** (or sufficiently non-polar)

g. Osmosis

- (1) A **special case of diffusion** where the diffusing particle is the **solvent (water)**
- (2) Water moves through a membrane from where it's more watery to where it's less watery (down its water gradient)
- (3) Examples with red blood cells and external solutions:
 - Isotonic solution: Same wateriness as cell interior; water moves in and out at same rate, cell volume unchanged (normal red blood cell)
 - Hypertonic solution: Higher solute concentration
 / less watery than cell; water leaves cell, causing crenation (shrinkage)
 - Hypotonic solution: Lower solute concentration / more watery than cell; water enters cell, causing swelling or lysis (bursting)

k. Facilitated Diffusion

- (1) Still diffusion (passive, down gradient) but requires **transport proteins** embedded in the membrane
- (2) For particles too big, polar, or charged to pass directly through the phospholipid bilayer
- 2. **Active Processes** (Requires additional energy, often ATP, to force movement)

a. Active Transport

- (1) Moves substances **against their concentration gradient** (from lower to higher concentration)
- (2) Performed by **pumps** (transport proteins that force movement)
- (3) Creates and maintains gradients, stockpiling

substances

- (4) Example: Sodium-potassium exchange pump
 - 1. Pumps sodium ions out of the cell and potassium ions into the cell simultaneously
 - Crucial for nervous and muscle cell function; accounts for a significant portion of body's energy budget
- f. **Vesicular Transport** (Transport using vesicles)
 - (1) **Exocytosis** (Exo = out, Cyto = cell)
 - Movement of substances out of the cell via a vesicle
 - 2. Vesicle fuses with the plasma membrane, spilling its contents outside
 - 3. Often called **secretion** (e.g., how glands work)
 - (2) **Endocytosis** (Endo = in, Cyto = cell)
 - Movement of substances into the cell via a vesicle
 - 2. Different kinds based on what is brought in:
 - 1. **Pinocytosis**: "Cell drinking," taking a sip of liquid from the exterior
 - 2. **Phagocytosis**: "Cell eating," bringing in a solid chunk from the exterior
 - Receptor-mediated endocytosis: Cell forms a vesicle only when specific substances bind to cell-surface receptors

F. DNA Functions

- 1. Replication
 - a. The exact copying of DNA

- b. Necessary for cell division (new cells come from preexisting cells)
- c. Before a cell splits, it doubles its DNA to provide a full copy to each daughter cell
- d. Based on DNA's **double-stranded nature** and **complementarity** (A with T, C with G)
 - (1) Each strand serves as a template for building the complementary new strand
- f. The original cell does not survive after division; it splits into two new cells
- g. Cell division involves two components:
 - (1) Mitosis: Division of the nucleus
 - (2) **Cytokinesis**: Division of everything else in the cell

2. Gene Expression

- a. Process by which information from a **gene** (instructions for a protein within DNA) is used to make a protein
- b. Consists of two main parts:

(1) Transcription

- 1. Occurs in the **nucleus** (where DNA is located)
- 2. DNA's code (gene sequence) is used to make an **RNA molecule** (a copy of the instructions)
- RNA carries the code out of the nucleus via nuclear pores

(2) Translation

- 1. Occurs at a **ribosome** (in the cytoplasm)
- The ribosome reads the RNA code to assemble the specific **protein** (stringing amino acids together)

G. Major Cell Functions/Types

- Cells that Connect Body Parts (e.g., fibroblasts, red blood cells â€" functionally connecting by transporting oxygen)
- 2. Cells that **Cover and Line Body Organs** (e.g., epithelial tissues like epidermis for protection)
- 3. Cells that **Move Organs and Body Parts** (e.g., muscle cells, which shorten or contract)
- Cells that Store Nutrients (e.g., adipocytes/fat cells, specialized for fat storage due to high energy density and for padding/insulation)
- Cells that Fight Disease (e.g., white blood cells/ leukocytes, involved in immunity, produce antibodies, basis for vaccinations)
- 6. Cells that Gather Information and Control Body Functions
 - a. **Nervous system** (e.g., **neurons**: send electrochemical signals via axons and dendrites)
 - b. **Endocrine system** (e.g., cells that release **hormones** chemical signals into bloodstream)
- 7. Cells of **Reproduction** (e.g., **gametes**: sperm (male) and egg (female); fusion forms a **zygote**, the beginning of a new life)

II. Tissues

- A. Introduction to Tissues
 - 1. **Histology**: The study of tissues
 - 2. Tissues are **collections of cells** that come together to perform a specific job
 - 3. Humans have four major tissue types:
 - a. Epithelial tissue
 - b. Connective tissue

- c. Nervous tissue
- d. Muscle tissue
- B. Epithelial Tissue (Epithelia plural)
 - Function: Line surfaces of organs or the body (exteriorly or interiorly)
 - 2. Characteristics:
 - a. Polarity: One side is attached, the other is free
 - (1) **Basal surface**: Attached to an underlying **basement membrane**
 - (2) **Apical surface**: Free or unattached surface (e.g., surface of skin)
 - 3. Classification by Layers (Specifies how many layers of cells)
 - a. Simple epithelium: One layer of cells thick
 - b. **Stratified epithelium**: **More than one layer** of cells (layered)
 - c. **Pseudostratified epithelium**: "Falsely stratified"; appears layered but is actually a **simple epithelium** where all cells touch the basement membrane (cells vary in height)
 - d. **Transitional epithelium**: Special category found in organs like the urinary bladder; can change from multiple layers to fewer layers as it stretches, and cell shape changes (e.g., columnar to squamous)
 - 4. Classification by Cell Shape (Determined by the shape of cells in the **apical layer**)
 - a. **Squamous**: Cells are much **thinner/shorter than they** are wide (scale-like, like floor tiles)
 - b. Cuboidal: Cells are roughly as thick/tall as they are wide (cube-shaped)

c. Columnar: Cells are thicker/taller than they are wide (column-shaped)

5. Examples of Epithelia:

a. Simple Squamous Epithelium

- (1) Characteristics: Thinnest possible epithelium (one layer, squamous cells)
- (2) Ideal for: Rapid **diffusion** over tiny distances
- (3) Example: Lining of the interior of the **lungs** (for gas exchange)

e. Simple Cuboidal Epithelium

- (1) Characteristics: One layer of cuboidal cells
- (2) Ideal for: Functions requiring internal machinery for **secretion** or absorption
- (3) Example: Tubules in the kidneys

i. Simple Columnar Epithelium

- (1) Characteristics: One layer of columnar cells (thickest simple type)
- (2) Ideal for: Functions requiring extensive internal machinery for **absorption** and transport proteins
- (3) Example: Lining of the gut

m. Pseudostratified Epithelium

(1) Characteristics: Appears stratified due to varied cell heights, but all cells contact basement membrane (simple)

o. Stratified Squamous Epithelium

- (1) Characteristics: Multiple layers, with apical cells being squamous
- (2) Ideal for: Areas undergoing a lot of abrasion,

providing protection by having many layers to lose

(3) Examples: Lining of the **throat**, **epidermis** of the skin, vagina

s. Transitional Epithelium

(1) Example: **Urinary bladder** (stretches, layers slip past each other and cells change shape)

C. Connective Tissue

- 1. General Characteristics:
 - a. Catch-all category for tissues not classified as epithelial, nervous, or muscle tissue
 - b. Has two major components:
 - (1) **Cellular component**: Various types of cells specific to the tissue
 - (2) **Extracellular matrix**: Stuff outside the cells, varying greatly among connective tissues
- 2. Examples/Types of Connective Tissue:

a. Bone

- (1) Cellular component: **Osteocytes** (bone cells) living in spaces called **lacunae**
- (2) Extracellular matrix: Hard, mineralized material
- (3) Structural unit: **Osteon** (concentric layers around a central canal containing blood vessels)

e. Cartilage

- (1) Tough but not as hard as bone
- (2) Cellular component: **Chondrocytes** (cartilage cells) living in lacunae
- (3) Types:
 - 1. Hyaline Cartilage: "Glassy" appearance, e.g.,

between sternum and ribs

- 2. **Fibrocartilage**: Contains many **protein fibers** in extracellular matrix, making it strong
- 3. Example: **Intervertebral discs** (pads between vertebrae of the spine), made of tough protein fibers like collagen, to hold vertebrae together

i. Dense Fibrous Connective Tissue

- (1) Characteristics: Extracellular matrix contains many protein fibers packed closely together ("dense")
- (2) Example: Tendons
 - 1. Connect skeletal muscle to bone
 - 2. Fibers are arranged in parallel ("regular") because they are pulled in one direction
 - 3. Do not stretch; provide strong, direct pull

I. Areolar Tissue (Loose Connective Tissue)

- (1) Characteristics: Few fibers packed loosely, with much space between them
- (2) Function: Allows for free movement, acts as "packing material"
- (3) Example: In the **hypodermis** beneath the dermis of the skin, allowing skin to move freely

p. Adipose Tissue

- (1) Composed of **adipocytes** (fat cells), specialized to contain fat
- (2) Function: Efficient **energy storage** (higher energy density than carbohydrates/proteins), **padding** delicate organs, **thermal insulation**
- (3) Fat is dissolved during slide preparation, making

cells appear empty

t. Reticular Tissue

- (1) Characteristics: Fibers arranged in a weblike network ("reticulum")
- (2) Function: Acts as a filter
- (3) Examples: In **lymph nodes** (filtering harmful substances) and the **spleen** (filtering out old, worn-out red blood cells)
- (4) Red blood cells lose nucleus and mitochondria during development, limiting their lifespan and ability to repair; wear out squeezing through capillaries

y. Blood

- (1) A mobile tissue and a connective tissue
- (2) Cellular component: Red blood cells(erythrocytes) (most numerous) and five types of white blood cells (leukocytes)
- (3) Extracellular matrix: **Plasma** (liquid component, remaining after cells are centrifuged out)

D. Muscle Tissue

- General Characteristics:
 - a. **Excitable tissue**: Able to create and transmit electrochemical signals (like nervous tissue)
 - b. All types **contract** (get shorter) actively; cannot push or actively get longer
- 2. Three Major Kinds:

a. Skeletal Muscle

- (1) Component of the **muscular system**
- (2) Cells (myofibers/muscle fibers) are long, non-

branching cylinders that run the entire length of the muscle

- (3) Characterized by very regular **striations** (banding patterns) that are all oriented in parallel
- (4) Contraction is initiated by signals from the **nervous system** (voluntary movement)

f. Cardiac Muscle

- (1) Makes up the **heart**; part of the circulatory system
- (2) Cells are also **striated** but individual cells are **branched**, leading to less regular striations
- (3) **Autorythmic**: Contracts on its own, over and over (involuntary)

j. Smooth Muscle

- (1) Found in many organ systems, usually lining **hollow organs** (e.g., intestines)
- (2) Cells are **spindle-shaped** (thicker in the middle, tapering at ends)
- (3) **Non-striated**: Lacks the regular striations seen in skeletal and cardiac muscle
- (4) **Autorythmic**: Contracts on its own (involuntary), forcing contents through organs

E. Nervous Tissue

1. Components:

a. Neurons

- (1) The **excitable cells** that create and transmit **electrochemical signals**
- (2) Have a large **cell body**, input structures called **dendrites**, and a long output structure called an **axon**

(3) Form the basis of thought and personality in the brain

e. Neuroglia (Glial Cells)

- (1) A category of cells within nervous tissue that are **not excitable**
- (2) Function: **Support the neurons** so they can live and perform their job
- 2. Functions: **Gather information** and **control body functions** (nervous system controls other systems)