II.

P-1000

P-100

460 µl

Cell Biology Laboratory					
		Names:			
Scienti			or Laborator nd Basic Lab		
Basic Labora	tory Techniq	ues (8 points t	otal)		
A. Meas	uring Mass of	r Weight			
		and standard d 3 points total)		eds of each type which you	
seed type	mea	u <u>n</u>	variance	standard deviation	
pinto beans					
		Graph that sum		shown above. Attach a copy	
B. Meas	uring Volume	es			
		and standard deach, 5 points		he following volume	
device	volume	<u>mean</u>	variance	standard deviation	
10 ml pipet	6.7 ml				
D 1000	460 1				

Additional Practice Problems (20 points total; 1 point each unless otherwise indicated). SHOW ALL OF THE STEPS IN EACH OF YOUR CALCULATIONS.

1.	How many µl are there in 6.7 ml? (0.5 points)
2.	How many ml are there in 12,678 µl? (0.5 points)
3.	How many μg are there in 3.56 g? (0.5 points)
4.	How many mg are there in 4.89 ng? (0.5 points)
5.	How many m are there in 3.5×10^5 mm?
6.	How many nm are there in 0.065 mm?
7.	How many kg are there in 3.5 pounds of oranges?
8.	How tall is a person (in feet and inches) who is 76 cm tall?

B. Preparation of Solutions

- 9. How many g of NaCl (FW = 58.44) is needed to make 2.5 L of a 0.4 M solution?
- 10. 150 g of NaCl (FW 58.44) was dissolved in a total volume of 500 mL. What is the concentration in moles/l?
- 11. A total of 100 mmoles of NaOH was added to 400 mL of a solution. What was the molarity of the solution?
- 12. How many g of H₂SO₄ does 600 ml of a 1.2 M solution of H₂SO₄ contain?
- 13. How much of a 10% (w/v) of NaCl can be made using 30 g of NaCl?
- 14. How many g of glucose will be required to make 750 ml of a 0.5% (w/v) solution?
- 15. A solution contains 15 ml of liquid ethanol in a total volume of 250 ml. What is the percent (v/v) of ethanol?
- 16. What is the molarity of a 1.5% NaCl solution?

C. Making Dilutions

17.	Suppose 500 ml of urine is diluted with 1250 ml of water. What is the dilution factor?
18.	If 150 μ l of a solution of serum is added to 90 μ l of water, what is the dilution factor?
19.	Suppose a sample of 200 μ l of blood needs to be diluted 1/50. How much diluent should be added and what will be the final volume?
20.	Suppose that a sample of urine is diluted 1/2, 1/3, and then 1/4. What is the final dilution factor?
21	Suppose that a sample of red blood cells at a concentration of 2.69×10^6 cells/ml is serially diluted $1/10$ three times and then serially diluted $1/2$ two times. What is the final concentration of cells/ml?
22.	A sample of yeast cells was serially diluted 1/10 five times and then serially diluted 1/3. The number of yeasts was 338 yeasts per ml. What was the original concentration?