Unnumbered 6 p93 *Biochemistry: A Short Course*, Second Edition © 2013 W. H. Freeman and Company Table 6.1 Rate enhancement by selected enzymes | Enzyme | Nonenzymatic half-life | Uncatalyzed rate $(k_{un} s^{-1})$ | Catalyzed rate $(k_{cat} s^{-1})$ | Rate enhancement
($k_{\rm cat}$ s ⁻¹ / $k_{\rm un}$ s ⁻¹) | |----------------------------|------------------------|------------------------------------|-----------------------------------|--| | OMP decarboxylase | 78,000,000 years | 2.8 × 10 ⁻¹⁶ | 39 | 1.4 × 10 ¹⁷ | | Staphylococcal nuclease | 130,000 years | 1.7×10^{-13} | 95 | $5.6 imes 10^{14}$ | | AMP nucleosidase | 69,000 years | 1.0×10^{-11} | 60 | 6.0×10^{12} | | Carboxypeptidase A | 7.3 years | 3.0 × 10 ⁻⁹ | 578 | 1.9 × 10 ¹¹ | | Ketosteroid isomerase | 7 weeks | 1.7×10^{-7} | 66,000 | 3.9 × 10 ¹¹ | | Triose phosphate isomerase | 1.9 days | 4.3 × 10 ⁻⁶ | 4,300 | 1.0 × 10° | | Chorismate mutase | 7.4 hours | 2.6 × 10 ⁻⁵ | 50 | 1.9 × 10 ⁶ | | Carbonic anhydrase | 5 seconds | 1.3×10^{-1} | 1 × 10 ⁶ | 7.7×10^6 | Abbreviations: OMP, orotidine monophosphate; AMP, adenosine monophosphate. Source: After A. Radzicka and R. Wolfenden, *Science* 267:90–93, 1995. Table 6.1 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company | TABLE 5.1 Enzyme Classification Based on Type of Chemical Reaction Catalyzed | | | | |--|---|---|--| | Class | Type of Chemical Reaction Catalyzed | Examples | | | Oxidoreductas | e Oxidation-reduction in which oxygen and hydrogen
are gained or lost | Cytochrome oxidase, lactate
dehydrogenase | | | Transferase | Transfer of functional groups, such as an amino group, acetyl group, or phosphate group | Acetate kinase, alanine deaminase | | | Hydrolase | Hydrolysis (addition of water) | Lipase, sucrase | | | Lyase | Removal of groups of atoms without hydrolysis | Oxalate decarboxylase, isocitrate lyase | | | Isomerase | Rearrangement of atoms within a mollecule | Glucose-phosphate isomerase, alanine racemase | | | Ligase | Joining of two molecules (using energy usually derived from the breakdown of ATP) | Acetyl-CoA synthetase, DNA ligase | | Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings. | Table 6.2 | Enzyme co | tactors | |------------------|-----------|---------| |------------------|-----------|---------| | Cofactor | Enzyme* | | |--|--------------------------|--| | Coenzyme [†] | | | | Thiamine pyrophosphate (TPP) | Pyruvate dehydrogenase | | | Flavin adenine nucleotide (FAD) | Monoamine oxidase | | | Nicotinamide adenine dinucleotide (NAD+) | Lactate dehydrogenase | | | Pyridoxal phosphate (PLP) | Glycogen phosphorylase | | | Coenzyme A (CoA) | Acetyl CoA carboxylase | | | Biotin | Pyruvate carboxylase | | | 6'-Deoxyadenosyl cobalamin | Methylmalonyl mutase | | | Tetrahydrofolate | Thymidylate synthase | | | Metal | | | | Zn ²⁺ | Carbonic anhydrase | | | Mg ²⁺ | EcoRV | | | Ni ²⁺ | Urease | | | Мо | Nitrogenase | | | Se | Glutathione peroxidase | | | Mn²+↔3+ | Superoxide dismutase | | | K ⁺ | Acetoacetyl CoA thiolase | | ^{*}The enzymes listed are examples of enzymes that employ the indicated cofactor. †Often derived from vitamins, coenzymes can be either tightly or loosely bound to the enzyme. **Table 6.3** Relation between $\Delta G^{\circ\prime}$ and K'_{eq} (at 25°C) | | Δ G °′ | | |-------------------------|---------------|--------------| | <i>K'</i> eq | kJ mol⁻¹ | kcal mol⁻¹ | | 10 ⁻⁵ | 28.53 | 6.82 | | 10-4 | 22.84 | 5.46 | | 10-3 | 17.11 | 4.09 | | 10-2 | 11.42 | 2.73 | | 10 ⁻¹ | 5.69 | 1.36 | | 1 | 0 | 0 | | 10 | -5.69 | -1.36 | | 10 ² | −11.42 | -2.73 | | 10 ³ | -17.11 | -4.09 | | 10 ⁴ | -22.84 | -5.46 | | 10 ⁵ | -28.53 | -6.82 | Table 6.3 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company ξ