Unnumbered 6 p93 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company Table 6.1 Rate enhancement by selected enzymes | Enzyme | Nonenzymatic half-life | Uncatalyzed rate $(k_{un} s^{-1})$ | Catalyzed rate $(k_{cat} s^{-1})$ | Rate enhancement
(k_{cat} s ⁻¹ / k_{un} s ⁻¹) | |----------------------------|------------------------|------------------------------------|-----------------------------------|--| | OMP decarboxylase | 78,000,000 years | 2.8 × 10 ⁻¹⁶ | 39 | 1.4 × 10 ¹⁷ | | Staphylococcal nuclease | 130,000 years | 1.7×10^{-13} | 95 | 5.6×10^{14} | | AMP nucleosidase | 69,000 years | 1.0×10^{-11} | 60 | 6.0×10^{12} | | Carboxypeptidase A | 7.3 years | 3.0×10^{-9} | 578 | 1.9×10^{11} | | Ketosteroid isomerase | 7 weeks | 1.7×10^{-7} | 66,000 | 3.9×10^{11} | | Triose phosphate isomerase | 1.9 days | 4.3×10^{-6} | 4,300 | 1.0×10^9 | | Chorismate mutase | 7.4 hours | 2.6×10^{-5} | 50 | 1.9×10^6 | | Carbonic anhydrase | 5 seconds | 1.3×10^{-1} | 1×10^6 | 7.7×10^6 | Abbreviations: OMP, orotidine monophosphate; AMP, adenosine monophosphate. Source: After A. Radzicka and R. Wolfenden, *Science* 267:90–93, 1995. Table 6.1 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company ## Unnumbered 6 p94 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company Figure 6.1 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company | Class Type of Chemical Reaction Catalyzed Oxidoreductase Oxidation-reduction in which oxygen and hydrogen are gained or lost Transferase Transfer of functional groups, such as an amino group, | Examples Cytochrome oxidase, lactate | |---|---| | are gained or lost | | | Transferase Transfer of functional groups, such as an amino group, | dehydrogenase | | acetyl group, or phosphate group | Acetate kinase, alanine deaminase | | Hydrolase Hydrolysis (addition of water) | Lipase, sucrase | | Lyase Removal of groups of atoms without hydrolysis | Oxalate decarboxylase, isocitrate lyase | | Isomerase Rearrangement of atoms within a mollecule | Glucose-phosphate isomerase, alanine racemase | | Ligase Joining of two molecules (using energy usually derived from the breakdown of ATP) | Acetyl-CoA synthetase, DNA ligase | Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings. **Table 6.2** Enzyme cofactors | Cofactor | Enzyme* | | |--|--------------------------|--| | Coenzyme [†] | | | | Thiamine pyrophosphate (TPP) | Pyruvate dehydrogenase | | | Flavin adenine nucleotide (FAD) | Monoamine oxidase | | | Nicotinamide adenine dinucleotide (NAD+) | Lactate dehydrogenase | | | Pyridoxal phosphate (PLP) | Glycogen phosphorylase | | | Coenzyme A (CoA) | Acetyl CoA carboxylase | | | Biotin | Pyruvate carboxylase | | | 6'-Deoxyadenosyl cobalamin | Methylmalonyl mutase | | | Tetrahydrofolate | Thymidylate synthase | | | Metal | | | | Zn ²⁺ | Carbonic anhydrase | | | Mg ²⁺ | EcoRV | | | Ni ²⁺ | Urease | | | Мо | Nitrogenase | | | Se | Glutathione peroxidase | | | Mn ^{2+↔3+} | Superoxide dismutase | | | K ⁺ | Acetoacetyl CoA thiolase | | ^{*}The enzymes listed are examples of enzymes that employ the indicated cofactor. [†]Often derived from vitamins, coenzymes can be either tightly or loosely bound to the enzyme. Figure 6.2 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company **Reaction progress** → Figure 6.3 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company **Table 6.3** Relation between $\Delta G^{\circ\prime}$ and K'_{eq} (at 25°C) | | $\Delta G^{\circ}'$ | | | |--------------------------|---------------------|------------------|--| | K ′ _{eq} | kJ mol⁻¹ | kcal mol⁻¹ | | | 10 ⁻⁵ | 28.53 | 6.82 | | | 10 ⁻⁴ | 22.84 | 5.46 | | | 10 ⁻³ | 17.11 | 4.09 | | | 10-2 | 11.42 | 2.73 | | | 10 ⁻¹ | 5.69 | 1.36 | | | 1 | 0 | 0 | | | 10 | -5.69 | -1.36 | | | 10 ² | -11.42 | -2.73 | | | 10 ³ | -17.11 | -4.09 | | | 10 ⁴ | -22.84 | -5.46 | | | 10 ⁵ | -28.53 | -6.82 | | **Table 6.3** *Biochemistry: A Short Course*, Second Edition © 2013 W. H. Freeman and Company Problem 6.13 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company Figure 6.4 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company Figure 6.6 Biochemistry: A Short Course, Second Edition © 2013 W. H. Freeman and Company